Gavin Kernaghan
Permanent URI for this community
Dr. Gavin Kernaghan is a Professor of Biology at Mount Saint Vincent University. Hie studies the biotic and abiotic factors that govern the structure of fungal communities, with a special focus on symbiotic relationships.
Browse
Browsing Gavin Kernaghan by Author "Kebli, Hedi"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemDevelopment and activity of early saproxylic fungal communities in harvested and unmanaged boreal mixedwood stands(European Journal of Forest Research (Springer), 2014-09) Kebli, Hedi; Kernaghan, Gavin; Drouin, Pascal; Brais, SuzanneLimited scientific information is currently available regarding saproxylic fungal communities in the boreal forest of North America. We aimed to characterize the community development, richness and activity of saproxylic fungi on fresh wood in harvested and unmanaged boreal mixedwood stands of northwestern Québec (Canada). Fresh wood blocks (n = 480) of balsam fir (Abies balsamea (L.) Mill.) and trembling aspen (Populus tremuloides Michx.) were placed on the forest floor in a range of stand conditions (n = 24). Blocks were harvested every 6 months for up to 30 months and characterized for species composition and richness (PCR–DGGE, DNA sequencing), respiration, wood density and lignin and cellulose content. Colonization by a wide range of functional groups proceeded rapidly under different stand conditions. We detected a total of 35 different fungal operational taxonomic units, with the highest species richness at the wood block level being observed within the first 12 months. No differences in community composition were found between wood host species or among stand conditions. However, the variability in fungal communities among blocks (β diversity) was lower on trembling aspen wood compared with balsam fir and decreased over time on trembling aspen wood. Also, fungal activity (respiration and wood decomposition) increased on trembling aspen wood blocks and species richness decreased on balsam fir wood over time in partial-cut sites. The overlap in tree composition among stands, the high volume of logs and the recent management history of these stands may have contributed to the similarity of the saproxylic fungal community among stand types and disturbances.