DEVELOPING A PROCEDURE TO TRANSFER GEOMETRICAL CONSTRAINTSFROM THE PLANE INTO SPACE

EvaKNOLL
Université de M ontréal
M ontréal, Q uébec, CAN AD A

ABST RACT

Topology teaches us that the two dimensional plane and three dimensional space have a comparable structure. In fact, this apparent parallel is deeply rooted in our consciousness and is applied in many domains, including various fields in the design industry, through the use of such tools as descriptive geometry and perspective drawing. From the particular point of view of the designer, however, this parallel in structure has often been simplified to plans, sections and elevations i.e. 2-D slices through a3-D object. It has thereforenot been an integral part of the design process, but rather a tool of representation of the design process.

In the following paper, the relationship between plane and space will be explored as a design element. The question will be answered whether it is possible, starting with a 2-dimensional system of design parameters, to constructa3-dimensional object based on the spatial equivalents of the initial parameters. To illustrate this process, the painting 0 pus 84 of H ans H interreiter (1902-1992), a Swiss C oncrete painter, will be reinterpreted in space. Keywords: H ans H interreiter, C onstructivism, geometry, dimensions, design.

Figure10 pus84 (1967)

1.INTRODUCTION

0 pus 84 (figure 1) is a circular painting with a diameter of 82 centimeters. It was completed afirstimein 1943, and in itsfinal version in 1967. The work itself is determined entirely by three sets of parameters. First, the col ors used throughout were chosen according to the color theory developed by Wilhelm O stwald. These colors were applied to areas determined by the combination of the other two sets of parameters. The first of theseleads to an orthogonal regular tiling of theplane, whilethe second dealswith a transformation of theunderlying orthogonal grid (figure2). In this paper, only the last two sets of parameters will beconsidered, sinceonly they aredependent on thenumber of dimensions.

Figure 2 Combining the two systems

2.THEREGULARTILING SYSTEM

In the diagram on theleft of figure 2, a concaveoctagon has been grayed out, showing the basic closed shape that makes up the pattern. This shape, which resembles a fatted \mathbf{S}, surrounds an intersection of axes. To facilitate the process, the shape will be sectioned into four sections, corresponding to the four quadrantsdefined by theseaxes (figure3).

As can immediately be seen, these sections come in two types: a simple right-angled equilateral triangle (top right or bottom left quadrant), which will from now on be referred to as D ; and a shape made of two triangular pieces (top left or bottom

Figure 3 The basic \mathbf{S} shape and its components
right quadrant), which will be referred to as \mathbf{Z}, after the broken linethat definesit. These sections (D and Z) always appear in the same combination throughout 0 pus 84 , and theonly symmetry group applied to the closed shape is simple translation by six units (see figure 3). We therefore are now faced with a polygon that is 'centered on each intersection of axes', composed of a combination of predefined sections (ZDZD) and moved by translation only.

M oving on into space, we are confronted with 8 quadrants defined by three limiting planes and surrounding their intersection (equivalent to the 4 quadrants of the2-D situation). W hat needs to be defined is the structure of the shapes that can be considered equivalent to the D and Z of the 2-D situation. In $2-D$, each section was defined as a polygon, 2 sides of which are collinear with the axes and touching the intersection of these axes. The other side, or sides are all contained in the given quadrant. Similarly, in the 3-D situation, the sections will be defined as polyhedra, 3 faces of which are coplanar with thelimiting planesof the quadrant and touching the intersection of these limiting planes.

What remains to be defined is the structure of the faces contained in each quadrant. To achieve this, we must begin by defining the shape of thefacesthat arecoplanar with the limiting planes. These can be borrowed directly from the 2-D situation, D and Z. If we keep with the rules of the painting, on each limiting plane the same configuration should befound as in the 2-D situation (ZDZD). Thismeansthat 3 fatted S'swill intersect at right anglesto each other to determine a new polyhedron. But this is not sufficient, sinceseveral combinations of the $3 \mathbf{S}$ shapes are possible. It is simpler at this point to begin with the definition of the individual polyhedra. O bviously, the simplest of these would be defined by three D's on the three limiting planes. This would give us a right angled tetrahedron pushed down into the corner of the quadrant (DDD in Figure 5). As soon as we begin making use of the Z section, however, it must be noted that where it is used in a given quadrant, in the neighboring one it is reversed! This new section comes about through an inherent property of space, namely the possible simultaneous existence of a 2-D object and its mirror image without the aid of that symmetry transformation. This section will from now on bereferred to asS. Wenow havethreedifferent 2-D sections to be used in defining our 3-D sections.

Combinatorially, and after having eliminated equivalent configurations, we are left with seven different sections in 3-D : DDD, DDZ, DZZ, DZS, DSZ, ZZZ and ZZS. The first of these sections has already been discussed. For DDZ, however, a problem presents itself already: if the polyhedron is triangulated using the given edges and vertices, a new edge which is collinear to one of thelimiting planesisintroduced (figure4). Theanalog doesnot happen in H interreiter's0 pus84.

Figure4TheDDZ configuration
This is therefore unfeasible and must be eliminated. To solve this, an additional point has been introduced inside the quadrant in order to 'lift' the surface away from the limiting planes. Thechoice of location for this additional point wasmade using similar coordinatesto thelifting points of theintermediate points in the Z (or S) variation: 2 and 4 units from theorigin of the quadrant (see figure 3). The same rationale is used in the development of the remaining sections. Since the addition of vertices becomes necessary only with the introduction of the Z or S variations, they are always located in proximity of the 'humps' that distinguish thesevariationsfrom D.

Figure5 N ine3-D variations

O nce the location of all the additional points has been established, however, a new dilemma arises. In the DSZ and ZZS cases, two possibletriangulationscan result from each configuration of vertices (figure5, DSZ, DSZ*, ZZS and ZZS*). The difference between these two solutions is that in one case (DSZ and ZZS), the additional vertex is joined with all the other possible vertices whereas in the other case (DSZ* and ZZS^{*}), the resultant polyhedron is actually made of two parts that touch only by a point located on one of the intersecting lines of the limiting planes.

N ow that all the pieces have been defined, it remainsto be resolved in what combinations these can be assembled. As was discussed previously, on each of the three limiting planes, the'fatted S' appears in its entirety. T his means that for each variation shown in figure 5, only a limited set of neighbors are valid. Furthermore, by virtue of the internal symmetry of the 'fatted S', it can be deduced that for each quadrant, the mirror image of the chosen variation will be positioned in the opposite quadrant (e.g. Top-Left-Front and Bottom-Right-Back). This means that there are really only four quadrants of eight that need to be determined (the other four will be their mirrors). Combinatorially (again), and after having eliminated equivalent configurations, we are left with four possible combinations. The first one is based on the DDD variation, around which threeDZZ variationsarearranged in such a way that their D face is adjacent to the DDD

quadrant. It follows that the other four quadrants contain one DDD and three DSS (the mirror image of DZZ) variations, in such a way that they all oppose their mirror image. This means that if the first DDD is in the top left front quadrant, the other will be in the bottom right back quadrant. T hiscreates an object with a central symmetry as well asan axial rotational oneof degree $3\left(120^{\circ}\right)$ around the axis of symmetry of theDDD quadrant. T he next solution begins again with the DDD variation, but this time one DZZ, one DZS and one DSZ variations surround it in such a way that their common faces match. Theother four quadrants, again, contain the mirror images of the first four respectively. This particular solution is illustrated in figure6, where the top four views show the top quadrants, each view showing one quadrant. T he bottom four views each show the quadrant immediately under theview above it. The third solution is based on the ZZZ variation surrounded by three DDSs (the mirror images of DDZ). This version, again, possesses a central symmetry (as do all), and an axial rotational symmetry of degree 3. Thelast solution is composed of the ZZS variation surrounded by two DDS and one DDZ variation. The other four quadrants contain one SSZ, two DDZ, and one DDS variation.

Finally, in each case, theresultant polyhedron istranslated along the three axes at the same interval of six units, as the 'fatted S' wasin the2-D situation.
3. DEFORMATION CONSTRAINTS

Figure 6 Solution using two DDD, two DZZ, two DZS and two DSZ

The previous section served to demonstrate that there are four valid non-equivalent solutions to the transfer into $3-\mathrm{D}$ of the tiling pattern used in Opus 84. The deformation grid shown in figure 2 poses a different problem. It is not a specific illustration of a set of parameters. Rather, it is a set of parameters that can be applied to another; a modifier. W hat is to be defined here, therefore, is a 3-D deformation grid equivalent to the one on the left of figure 2. From that diagram, we can deduce that the deformed grid used in Opus 84 by H ans H interreiter is as follows: two sets of straight lines radiate from two points on the limiting circle. The points are at 60 degrees of each other in relation to the center of the circle and the straight lines are at 30 degrees of each other in each set of five, startingwith thelinejoiningthetwo points.

The equivalent situation in 3-D can be defined as follows: three sets of planes radiate from three axes defined by three points on the surface of the limiting sphere. The axes are defined by threepointsat 60 degreesto each other in relation to thecenter of the sphere, and the planes areat 30 degreesto each other starting with theplanejoining thethreepoints.

This new set of parameters is illustrated in figure 7. The view on the left is taken through the axis of symmetry of the configuration. The center view is a section taken through theone of thethreeplanes of symmetry. Theview on theright istaken perpendicularly to the planetouching thethreefoci.

Figure 7 D eformation grid in 3-D

4. CONCLUSION

With the deformed grid and the polyhedron defined, the only step remaining is the integration of the two components. This is achieved by placing the chosen polyhedron at every intersection of three planes in the above configuration in such a way that the instances are foreshortened aswell as skewed proportionally to the grid. Because the symmetry of the polyhedra is different from that of the deformation grid, the solutions to this combination of two systems aremore numerousthan they were at the preceding steps. The representation of even a single one of these solutions poses a further problem: not only isit so complex that the human eye and mind cannot grasp it and therefore reads it as a single more or less
homogenous mass, but it could only really be assimilated in its 3-D form. It is therefore useless, unfortunately, to illustrateit in thiscontext.

The process as a whole was not, however, a failure. It has after all been established that it is indeed possible to transfer a set of geometric constraints from the plane into space. The fact that this particular attempt was successful does not unfortunately guarantee the universal success of the process. It is quitelikely, in fact, that several conditions to the existence of a solution happen to havebeen met.

For example, it happens to be the case that the preceding set of constraints are all based on the regular square grid. This structure is known to have an equivalent in 3-D. But what of the other two regular subdivisions of the plane? The equilateral triangle (figure 8, left) has three regular equivalents in 3-D, the tetrahedron, the octahedron, and

Figure 8 Regular grids and their equivalences in 3-D
the icosahedron. None of these fill space by themselves (although the tetrahedron and the octahedron can do so together). As for the hexagon (figure 8, right), it has no regular equivalent in 3-D since it takes at least three faces to meet at any vertex, and three hexagons cover 360° when placed corner to corner. There are probably other conditions like this one that could stand in the way of a solution to the transfer into 3-D of other sets of geometrical constraints. There may also be ways around these. It would also be interesting to try this process between two different spaces, for example 3 -space and 4 -space!

From the point of view of the designer, there are other drawbacks. First there is a fact that has been illustrated beautifully in this example; the 2-D set of constraints resulted in an object with just the right amount of complexity to make it interesting, while its equival ent in 3-D reached a complexity that becomes unreadable and therefore esthetically irrelevant. Another point concerns the way visual design is perceived. In the case of a 2-D design, theesthetic decisions concern theinside, thewhole breadth and width of theobject. In 3-D, in most cases, the design decisionsconcern theshapeand finish of theoutside surfaceonly. T his meansthat unless therearemoving parts,
what happens inside the thickness of the object is irrelevant. T he 3-D object is therefore still, in a way, a 2D design, except that the surface has been stretched over a 3-D shape.

ACKNOWLEDGMENTS

I would hereby like to thank the research group GRCAO of the Université de M ontréal School of Architecture for letting me use their experimental CAD software, SGD L, as well as Janos Baracs for his advice and Willy Knoll and Roger Tobie for their inspiration.

REFERENCES
Albrecht, H.J. and Koella, R., 1982, Hans H interreiter, Waser, Buchs, Zürich.

H interreiter, H ., 1948, D ie Kunst der reinen Form, Ediciones Ebusus, I biza.

H ilbert, D., C ohn-Vossen, S., 1952, Geometry and the Imagination, Chelsea, New York.

ABOUT THE AUTHOR

Eva Knoll B.Sc.Arch., M .Sc.A., works with teachers and mathematicians in mathematics education reform. She is a part of the initial development team of Project Geraldine. She can be reached by e-mail: evaknoll@netscape.net, by fax: (514)689-1819, or by mail: 308 Chemin du Tour, Ile Bigras, Laval, Q uébec, Canada, H 7Y1H 2.

