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Abstract

This study examined the role of mathematical understanding in students’ overall
mathematical knowledge. Participants included a total of two students who were tested
with a selection of items from the mathematics subtests of the Wechsler Individual
Achievement Test, Second Edition (WIAT-II) and a set of comparison items (Pilot
Items). Results suggested that there was a difference between the type of information
collected by the two item sets and that mathematical understanding could exist in the
face of poor calculation skills. Additionally, an Evaluation Rubric was developed based
on the work of the National Council of Teachers of Mathematics (NCTM). Both of the
mathematics subtests of the WIAT-II were analyzed using the Evaluation Rubric, as
were the Pilot [tems. Results suggested that the WIAT-II items were weakest in the
areas of Process and Knowledge Representation whereas the Pilot Items were strongest
in these areas. Findings are discussed within the context of psychoeducational
assessment and mathematics learning disabilities.
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Introduction

The essence of mathematics is not to make simple things complicated, but to make complicated things
simple. - S. Gudder

Mathematics is supposed to make complicated things simpler, not the other way
around. Yet commonly, mathematics is seen as complicated beyond reason and
unrelated to use in daily life. One reason why mathematics is viewed in this negative
light is due to the general public’s understanding of mathematics as the ability to
compute number facts quickly and automatically. When children struggle to learn their
addition, subtraction, multiplication, and division facts, adults may assume this
difficulty to indicate a lack of affinity for mathematics. With this research, I challenge
the notion that computation skills are a good overall measure of a person’s
mathematical ability. I hope to show that computation skills are not a substitute for
conceptual understanding and that understanding is an important variable to consider
when measuring mathematical skill and knowledge.

As a budding school psychologist, I first became interested in this topic when I
noticed that despite students’ low mathematics scores on academic achievement
measures, the focus of remediation was often placed on other areas of academic
deficiencies such as reading, commonly believed by educators to be of greater
importance to later success in life and of greater detriment if left untreated. Certainly,
the importance of reading skills is nowhere debated in this paper. However, a case is
made for the importance of mathematics for success in later life and the popular notion
of mathematics understood narrowly as calculation is challenged. I also noticed that it is
possible in some cases that children may be highly proficient in performing

calculations, yet remain unaware of the concepts underlying any given algorithm. By



accepting computational proficiency as signifying both skill and understanding without
explicitly testing for understanding, educators may overestimate students’ true
mathematical knowledge. As such, I developed alternative test items based on the work
of Ruch and colleagues (1925) aimed at accessing students’ mathematical thinking and
understanding above and beyond that measured by the ability to utilize mathematics
facts effectively. Also, I developed an evaluation rubric based on the National Council of
Teachers of Mathematics (NCTM) guidelines (2006) for evaluating large-scale
assessment tools by which to examine tools currently used to assess students’
mathematical skills.

It is my hope that by assessing critically the tools currently used to measure
mathematics and by testing the effectiveness of an alternative item set aimed at
measuring mathematical understanding, educational professionals will become more
aware of the limitations of mathematics achievement measures and will have a better
idea of the types of questions that might do a better job of assessing mathematical
understanding. It is my intention that test questions similar to the alternative item set,
with a focus on mathematical thinking and understanding, will replace currently used
test items that rely heavily on computation to provide an overall measure of
mathematical ability, or those which account only for the correctness of the final
response, given that knowledge is rarely an all or nothing phenomenon (Carpenter &
Leher, 1999; Hiebert & Carpenter, 1992). Therefore, assessments, which rely only on
the correctness or incorrectness of student responses, could not capture accurately the

full extent of student knowledge and it was hypothesized that the alternative test items



would provide a more precise sampling of students’ true mathematical skills,

knowledge, and understanding.
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Chapter 1: The Problem

In 2000, the National Council of Teachers of Mathematics (NCTM) defined the
ideal mathematical disposition to be one in which students see mathematics as a
sensible activity, a useful tool, and a worthwhile pursuit. Although children may enter
school with foundational skills and knowledge in mathematics, school mathematics is
often approached as an exercise in the memorization of facts or the application of
procedures (Romberg & Kaput, 1999). Unsurprisingly, many children grow to dislike
mathematics and see it as disconnected from their everyday experiences (Hiebert,
1984). Some students may perform quite well in mathematics with little understanding
of the concepts underlying the rules and procedures they apply (Tobias, 1994). It seems
that many people never move beyond superficial experiences with mathematics to

develop the ideal disposition as described by the NCTM (2000).

Mathematics, in its real sense, is often misunderstood. The scope of mathematics
extends beyond counting and arithmetic, yet, historically, mathematics has been taught
in terms of the application and memorization of rules and procedures (Hiebert, 1984;
Romberg & Kaput, 1999; Small, 1990). In terms of assessment, measuring only the
correctness of the student’s response does not necessarily reveal either knowledge or a
lack of knowledge (Cramer & Wyberg, 2007). For example, Cramer and Wyberg (2007)
discuss a student who is able to correctly compute the sum of 2/3 + %, however, is
unable to estimate whether or not the sum would be greater than %. This example
demonstrates the importance of assessing students’ thinking and understanding for

capturing a better sample of their knowledge, beyond simply their ability to perform
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computations. Psycho-educational assessments rarely, if ever, award points for process
over correctness of the final answer. For example, within the mathematics subtests of
the Wechsler Individual Achievement Test, Second Edition (WIAT-II), responses are
scored as either correct or incorrect for which the student receives either one or zero
points respectively. Indeed, the standardized nature of many psycho-educational
batteries prevents the examiner from querying students at the time of the response as
to their thought processes. Although experienced examiners may develop a deeper
understanding of mathematics and, upon the completion of a subtest, invite the
examinee to elaborate on his or her rationale for a particular response, such an
examination procedure is rarely built into assessment tools, despite the quality of
information it would derive. This process is also known within the field as testing-of-
limits (Sattler, 2001). However, there is no guarantee that even examiners with years of
experience ever implement this type of additional assessment. Correctness of the final
response is generally presumed to be an indicator of the child's understanding;
however, without explicitly assessing students’ mathematical thinking and
understanding of a given problem, it is difficult to get an accurate idea of their true
mathematical knowledge and ability. This is a problem, because academic achievement
measures are often used as a primary source of information when determining the
presence or absence of a specific learning disability in mathematics, or in other
academic areas. Because of the powerful decisions tied to assessment measures, it is
imperative that researchers and other professionals continually question, refine, and
revise these tools. Since some members of the general public view failure in

mathematics as more acceptable than in other academic areas (e.g. the view that people
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don’t use the skills they learn in math class and always have the option of using a
calculator; McCloskey, 2007) it is necessary to consider what constitutes mathematical
skill, and to examine the components that contribute to successful performance in
mathematics. These factors should then be related to psycho-educational assessment
batteries as these measures are often relied upon heavily to provide information about
an individual student’s performance compared with that of a national normative
sample. One purpose of these assessments is to provide professionals working with the
student with more knowledge of the reasons why a particular student may be
struggling with mathematics. In an effort to ensure that students’ true mathematical
knowledge is accurately and sufficiently captured, the present research project is

undertaken.
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Chapter 2: Literature Review

Introduction

Recently, the importance of mathematical skill and understanding for later
academic achievement has been shown with kindergarten-aged children. Clements and
Sarama (2008) found that early mathematical knowledge was a strong predictor of
later proficiency in mathematics as well as in reading. In addition to knowledge of
mathematics, other factors such as anxiety and self-efficacy have been discussed in the
literature. In 2001, the National Research Council’s description of the target
mathematical disposition included elements in which students see mathematics as
having use in one’s life, of practical importance, a valuable pursuit, and a belief in one’s
ability to succeed (Kilpatrick, Swafford, & Findell, 2001). There are many factors that
affect successful performance in mathematics, many of which I review in the following
sections. Starting with the early years, I first discuss students’ initial mathematical skills
and abilities and consider the transformation of attitude that often occurs in relation to
the learning of mathematics in today’s classroom. Next, I question a commonly accepted
conception of mathematical proficiency and discuss an alternative conceptualization of
mathematical thinking, skill, and understanding. The focus of this alternative
conceptualization relates more to students’ mathematical thinking and understanding
that is common in earlier years. For example, the work of Joan Moss and Robbie Case
(1999) has demonstrated that by shifting the focus from the teaching of rote application
of procedures to using children’s existing knowledge bases to build new knowledge that

deeper conceptual understanding can be developed.



14

The role of emotions in learning is so strong that some researchers have posed
the question of whether mathematics anxiety is a particular sort of mathematical
learning disability (Ashcraft, Krause, & Hopko, 2007). Clearly, the impact of anxiety on
mathematics is in need of review in order to gain an appreciation of today’s students in
mathematics classrooms. Additionally, some research has probed into the effect that
gender and stereotypes may have on mathematical learning and performance (e.g. Ben-
Zeev, Duncan, & Forbes, 2005; Fennema, 1989; Royer & Walles, 2007). Although less
researched, these qualitative factors impact mathematical performance and are in need
of consideration in order to fully conceptualize and understand the range of demands
that students encounter in the mathematics classroom. Further, since language is
inextricably involved in the teaching, learning, and application of mathematics, the
impact of language on mathematics cannot be ignored (Boulet, 2007). The role that
language plays in the scope of mathematics is in need of consideration when studying
mathematics from a broad perspective of factors that may influence performance. Of
additional relevance, is the manner in which each of the above mentioned factors (i.e.
mathematics education in the classroom, cognition, anxiety, gender/stereotypes,
language) might combine to produce specific learning disabilities or difficulties in
mathematics. Since assessment tools cannot hope to capture all of the above mentioned
factors influencing mathematical performance, educational professionals must possess
knowledge of these variables, have the ability to combine it with the data collected
through assessment tools, and put it all together to create a coherent picture of the
individual student’s mathematics learning profile. Psychoeducational assessment

batteries play a key role in providing information regarding a student’s academic skill
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set. As such, in the rest of this chapter I review the history of mathematics achievement
testing, current assessment models, and up and coming frameworks. As a whole, I hope
that the factors chosen for review present the reader with an overview of the variables
involved in the successful learning and performance in mathematics and provide a
working knowledge of the factors involved in the assessment of mathematical
difficulties and disabilities. Finally, I discuss an alternative item set that I believe do a
better job of accurately accounting for student’s mathematical skills, knowledge, and
understanding. Figure 1 presents a pictorial overview of the information to be

presented within the current chapter.

Figure 1.
A Pictorial Overview of Topics in the Literature Review
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Mathematical Understanding in the Early Years

Children’s Initial Understanding
Most children enter school with some informal mathematical understanding and

skill (Hiebert, 1984). They demonstrate this knowledge with their ability to reason
analytically and to solve real-life, practical problems. For many children, an unfortunate
shift occurs in the way mathematical problems are approached. In school, mathematics
is often taught in terms of symbols, procedures, and rules. As a result, many children
abandon their authentic, innate understanding of mathematics and adopt a superficial
approach to solving problems (Devlin, 2000). They no longer see connections between
what is learned in the classroom and what exists in their everyday lives. In the context
of the present study, it is important that the reader be aware of the changes from early
mathematical understanding to one of surface experiences with mathematics that can
happen. Also of importance is how this shift impacts assessments of students’
mathematical knowledge. Since some assessment measures may not accurately capture
the full extent of students’ understanding, the reader is invited to join the researcher on
a search for the type of assessment questions that may give students greater

opportunities to accurately portray their mathematical knowledge and understanding.

In the classroom, an emphasis is often placed on the exactness of procedures and
outcomes rather than on process and understanding (Tobias, 1994). When students
believe that there is only one correct solution to a problem, or only one correct method
of arriving at a solution, they are less likely to use creative or intuitive approaches to
problem solving. It seems that the formal manner in which mathematics is traditionally

taught moves children away from their initial and more genuine understanding of
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mathematics instead of guiding them to higher-level thinking (Hiebert, 1984).
Consequently, when a student makes a distinction between school-math and real-life
math, school-math often becomes the meaningless exercise of recalling facts or applying

specific procedures.

William Butler Yeats (n.d.) eloquently stated that, “education is not the filling of a
pail, but the lighting of a fire.” Similarly, true mathematical learning is not the recalling
of facts or the memorization of procedures. We seek not the type of learning that is
briefly committed to memory, only to decay and disappear following an exam, but
rather, the type that enhances one’s mind, helps one to think more clearly, or develops
some skill. If schools are satisfied with the type of learning that stops at memorization,
then they condemn the children to a superficial type of knowing without
understanding; surely, this cannot be called true learning. By understanding the true
nature of mathematics, which entails knowing that its scope extends far beyond
calculation, mathematics can become a meaningful tool that has the potential to assist

students in a wide variety of endeavours.

In its purest sense, mathematics is “a philosophy that simultaneously stresses
erudition and common sense, integration through application, and innovation through
creativity. Most important, it stresses the creation of knowledge. Against this broad and
ambitious view of mathematics, traditional school mathematics appears thin, lifeless,
and isolated” (Romberg & Kaput, 1999; p.7). In school, mathematics is frequently taught
in a manner at odds with this description. In place of common sense and creativity,
there is rote memorization and timed drills; instead of integration and application,

there is little real-world context by which to make sense of concepts (Brady & Bowd,
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2005). Also both common and problematic in the mathematics classroom is the
insufficiently explained mathematical language, teachers’ tendency to skim over
concepts, and the sequential nature of the mathematics curriculum, which all too often
leaves struggling children behind (Brady & Bowd, 2005). It seems there is much work
to be done to rectify the manner in which mathematics is taught in schools. Indeed, the
National Council of Teachers of Mathematics (NCTM) devotes a full chapter in their 69t
Yearbook to describing the phases of mathematics reforms that have taken place, from
the drill and practice phase of the 1920’s, to the standards, assessment, and
accountability phase from the 1990’s into the present (Lambdin & Walcott, 2007). Many
of the phases of previous generations can still be seen in today’s mathematics

classrooms.

Commonly, students appear to understand a mathematical concept, yet when a
small change is made, they become lost (Moss & Case, 1999). An essential feature of
successful mathematical learning is the creation of knowledge relationships, or an
understanding of the connections among mathematical concepts (Romberg & Kaput,
1999). When children are unsuccessful at making these connections, mathematical
skills are viewed in isolation and related very little, if at all, to everyday life (Carpenter
& Leher, 1999). An awareness of interrelationships among mathematical concepts aids
in one’s ability to solve novel problems. Since it is impossible for teachers to prepare
students for every potential problem they may encounter, it is important that students
be taught from an early age how to integrate their formal and informal mathematical

knowledge.
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Mathematics, like other subjects taught in school, is meant to assist students in
their everyday lives. The intention is not for it to be an isolated academic pursuit that
makes sense only in the context of a classroom. The manner in which mathematics is
taught from an early age is clearly one of great importance since it has implications that
extend beyond mathematics and includes literacy skills, despite the fact that the two
subjects are seemingly unrelated (Clements & Samara, 2008). Generalization of
knowledge, as well as diverse yet coherent conceptualizations of what constitutes

mathematical success are of paramount importance.

Mathematics Misunderstood
The general public tends to view mathematics differently from the way

mathematicians view mathematics. Commonly, mathematics is seen as synonymous
with arithmetic (Devlin, 2000). In fact, arithmetic is a low-level branch of mathematics
and a person’s computational skills does not necessarily indicate mathematical ability
or understanding (Devlin, 2000). Often, a student who is able to perform algorithms
automatically is seen as mathematically proficient; however, a focus on exactness of the
answer does not ensure that the student understands the underlying concepts and can
become a replacement for thinking (Tobias, 1994). In the context of the present study,
the conceptualization of mathematical proficiency is of major importance. It was
hypothesized that the conceptualization of mathematical proficiency as restricted to
symbols, numbers, calculation, and algorithms is far too narrow and the usefulness of

this idea of mathematics was analyzed.

In contrast to the general public, mathematicians view mathematics as an ability

to think, to reason, and to problem solve using mathematics as a tool to assist, not
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replace, one’s thinking (Devlin, 2000). Romberg and Kaput (1999) describe the aim of
mathematics education as, “...teaching students to use mathematics to build and
communicate ideas, to use it as a powerful analytic and problem-solving tool, and to be
fascinated by the patterns it embodies and exposes” (p.16). If mathematics is to be
understood broadly and in its truest sense as Romberg and Kaput (1999) describe it,
there must be movement away from the memorization and drill techniques that are too
frequently used in the elementary school mathematics classroom. For example,
Fennema and colleagues (1993) provided a workshop to teachers where they
presented an alternative framework for teaching addition and subtraction. Some
features of the new framework included building on students’ existing knowledge,
using real-life problems that were meaningful to the students, and teaching strategies
for solving number facts, rather than rote memorization. The researchers discovered
that compared to students whose teachers had not attended the workshop, those in the
experimental group showed significant gains in number fact knowledge, reported
increases in confidence and understanding, and a significant rise in solving word
problems. It is interesting to note that these gains were produced, despite the fact that
the experimental group teachers spent less time in a different type of instruction than

control group teachers (Fennema et al., 1993).

Mathematics is not synonymous with arithmetic (i.e. numerical operations).
Also, arithmetical proficiency is not necessarily indicative of mathematical
understanding. If arithmetical skill does not necessarily indicate mathematical
understanding, therefore, a lack of arithmetical proficiency is not necessarily indicative

of a lack of mathematical understanding. A more accurate conceptualization of
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mathematical skill is one which accounts for students’ skill at using mathematical
procedures to assist in thinking through a real problem. It is the difference between
using an algorithm to assist one in solving a real life problem and absent-mindedly
computing a series of arithmetic problems on a worksheet in a classroom. In the former,
the mind is engaged, the answer must seem reasonable, and the algorithm is a

supporting player, rather than occupying the lead role.

Non-Mathematical Factors Influencing Performance

Mathematics Anxiety and Attitudes
Emotions are known to influence learning (Tobias, 1994). Mathematics anxiety

is a negative emotion experienced by some in the mathematics classroom and in real-
world contexts and has been identified as a factor known to influence students’
performance in situations where mathematical problem solving or calculation must
occur (Ashcraft et al,, 2007). Due to the impact that mathematics anxiety can have on
learning and performance in the area of mathematics, it is in need of consideration. In
her book, Tobias (1994) describes a feeling of “sudden death”, referring to a belief that
one’s personal capacity for mathematical understanding has been reached. A common
impression exists among lay people, perhaps more than in other academic areas, that
some people are good at mathematics while others are not. Some students experience
“sudden death” within the first few years of elementary school, prior to studying
branches of mathematics that require less monotony as can be the case with the
learning of computation. Unfortunately, students may develop false beliefs regarding

their aptitude for mathematics prior to encountering mathematics of some substance.
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The presence of negative or anxious feelings can make concentration, as well as

learning, more difficult (Tobias, 1994).

Past research has established some negative outcomes that mathematics anxiety
has on both performance and achievement, including fewer courses enrolled in by the
mathematically anxious and lower grades in mathematics courses (Ashcraft & Kirk,
2001). Fennema's (1989) Autonomous Learning Behaviour model describes attitudes
as affecting opportunity to develop mathematical mastery. Effectively, the highly
mathematically anxious have fewer opportunities to practice their skills, to experience
success in mathematics, and this in turn negatively impacts subsequent performance
and mathematics self-confidence. In contrast, those with lower mathematics anxiety
and more positive attitudes tend to seek out mathematical experiences, thereby
increasing their exposure to mathematics, their opportunity to practice, and to

experience success (Ashcraft & Kirk, 2001; Fennema, 1989).

Until recently, relatively little was known about the cognitive mechanisms of
mathematics anxiety. Ashcraft and Kirk (2001) examined the effect of mathematics
anxiety on working memory and performance, based on Eysenck and Calvo’s (1992)
Processing Efficiency Theory. Ashcraft and Kirk (2001) hypothesized that the intrusive
thoughts and worry characteristic of anxiety compete for the limited resources of the
working memory system, resulting in poorer performance. The effect of these
additional demands on working memory tends to be slower performance and reduced
accuracy. Based on a series of experiments testing high and low mathematics anxiety in
a variety of situations, Ashcraft and Kirk (2001) add to Fennema'’s (1989) model of

mathematics anxiety and draw a new conclusion. Rather than suggesting poor working
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memory and a lack of basic competence to explain the differing levels of anxiety,
working memory is suggested to be temporarily disrupted by attention to intrusive
thoughts and worry. Furthermore, this disruption is hypothesized to be present not
only in testing situations, but also in mathematical learning situations in general
(Ashcraft & Kirk, 2001). Figures 2 and 3 present diagrams of Fennema’s (1989) model

and the model proposed by Ashcraft and Kirk (2001).

Figure 2.
The Effect of Mathematical Attitudes and Anxiety on Performance (Fennema, 1989)

Mathematical Competence,

Mathematical Attitudes and "> Learning, Mastery, and —— Performance

Anxiety Skill

Figure 3.
The Effect of Anxiety on Working Memory and Subsequent Mathematical Learning and Performance (Ashcraft & Kirk,
2001)

Mathematical Knowledge, — Working Memory —— Performance

Competence, and Skill

| |

On-Line Mathematics Anxiety Reaction to
Demands

One cause of mathematics anxiety include environmental factors, such as a
highly math anxious teacher (Trujillo & Hadfield, 1999). From a variety of case studies,
pre-service teachers identified as highly mathematically anxious recounted the
following types of encounters with their own mathematics teachers: student perception

of teacher as nervous or insecure, teacher unwillingness to answer student questions,
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little explanations provided by the teacher, teacher-focused rather than student focused
lessons, little discussion, and lecture followed by independent seat work format
(Trujillo & Hadfield, 1999). Interestingly, many of these factors mirror those described
by Kersaint (2007) in her discussion of classroom factors characteristic of low
performing mathematics programs. Mathematically anxious teachers may unwittingly
convey their anxious feelings toward mathematics to their students (Widmer & Chavez,
1982). Past mathematical experiences are cumulative and have an impact on the way
one approaches the subject as a teacher and educators teach mathematics in
accordance with their personal experiences with the subject (Brady & Bowd, 2005). In
some cases, teachers do not feel adequately prepared to teach mathematics, even at a
low grade-level (Carpenter & Leher, 1999). Ashcraft (2002) suggests that students
whose teachers provide little cognitive or motivational support to students during
mathematics lessons (e.g. place a high value on exactness of procedure and outcome,

little opportunity for discussion) are at-risk for developing math anxiety.

Royer and Walles (2007) point out that many of the early work on math anxiety
continues to be replicated in research on math anxiety today. Royer and Walles (2007)
state that one important factor is the finding that mathematics anxiety interferes with
both the learning and application of mathematics. The potential impact of mathematics
anxiety is long-term and may affect students’ career choices (Fennema, 1989). Two
models have been suggested to account for the negative impact that mathematics
anxiety can have. One, in which the individual attempts to avoid the negative experience
of performing poorly and thereby has fewer mathematical experiences upon which to

build knowledge (Fennema, 1989), and the other in which working memory is
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disrupted such that students have fewer cognitive resources by which to learn and
execute mathematical thinking and reasoning processes (Ashcraft & Kirk, 2001).
Additionally, students may be at risk of developing feelings of mathematics anxiety
through secondary sources, such as unresolved teacher feelings of mathematics anxiety
being passed on to students (Ashcraft, 2002). The negative impact of mathematics
anxiety can be seen from early experiences in the classroom and may continue into

adult life.

Mathematics, Gender, and Stereotypes
Students’ attitudes toward mathematics and subsequent performance also can

be shaped by cultural and gender stereotypes. Research has mostly focused on
identifying the cognitive aspects that contribute to learning problems in mathematics,
however, factors such as stereotype threat have been found to influence performance in
mathematics (Royer &Walles, 2007). In the context of the present study, the impact of
gender and stereotype threat was given consideration in an effort to examine critically
the variables known to influence performance in mathematics and to include those
factors that have historically been given less attention in the research. The effect of
gender and stereotype threat should be of prime interest to all educational
professionals given the increasing degree of diversity in classrooms across North
America today (Meacham, McClellan, Pearse, & Greene, 2003).

Researchers have not found evidence to support the view that one sex is more
likely than the other to suffer from a Mathematics Learning Disability, or MD (Shalev,
Manor, & Gross-Tsur, 2005). Despite this finding, there are a number of stereotypes that

exist regarding mathematics and gender, and disheartening statistics abound. Ben-Zeev
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and colleagues (2005) reported that females are less likely to participate in
mathematical activities, to take higher-level mathematics courses, and are less likely to
pursue an undergraduate degree in mathematics or to seek employment in a
mathematics-related field. It has also been reported that men outperform women on
standardized measures of mathematics, such as the GRE (Brown & Josephs, 1999).
These research findings suggest a very real disadvantage for students from historically
underpriviledged groups, the effect of which may be long lasting. Some researchers (e.g.
Hyde, Fennema, Ryan, & Frost, 1990; Tobias, 1990) describe the impact that social

variables can have on the pursuit of higher-level mathematics.

Hyde and colleagues (1990) reports that some variation in male-female entrance
to mathematics professions is due to a lack of risk-taking attitudes among females. Risk-
taking, as related to mathematical achievement, is dependent upon feelings of personal
control and choosing to engage in high-level mathematical tasks (Hyde et al., 1990).
Drawing from attribution theory, Tobias (1990) reports that girls are more likely to
attribute success in mathematics to effort, whereas boys are more likely to attribute
success to ability. It seems that girls who attribute their mathematical success to effort,
rather than to ability, may be less likely to persist in mathematics, perhaps due to the
hierarchical nature of mathematics education and a belief that eventual “sudden death”
would be certain. Fullilove and Treisman (1990) report that isolation is another factor
that may contribute to success in mathematics. When females feel isolated in the
development of their mathematical thoughts, skills, and understanding, they may be
less likely to pursue mathematics (Fennema, 1989). Although there are no biological

determinants favouring mathematical success in one sex over the other, it seems that
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the existence of factors affecting performance in mathematics are in need of

consideration when studying mathematics achievement.

Females and other historically underprivileged groups may suffer from
stereotype threat in relation to mathematical performance (Ben-Zeev et al., 2005).
Stereotype threat is defined as the “extra pressures that can affect the test performance
and academic identities of such groups as African Americans and women in math”
(Steele, 1998; p.681). Stereotype threat need not be overt to have an effect. High-
achieving females’ performance on a standardized achievement test was found to
decline proportionately to the ratio of males to females in the room; the more isolated
the females, the lower their scores were (Inzlicht & Ben-Zeev, 2000). This research
shows the delicate nature of stereotypes. It is important to note that the personal
meaning of the stereotype is not uniform across all disadvantaged groups (Ben-Zeev et
al,, 2005). This means that stereotyped individuals are not a homogeneous group and

that not all members will respond in the same manner.

Steele and colleagues (1997) showed that performance could be affected by
priming individuals with either a facilitating or a hindering message (e.g. by announcing
that females tend to perform lower on standardized tests than males). This information
is crucial for classroom teachers, who need to be sensitive to the additional pressure
that young girls and students from minority groups may be experiencing during
mathematics lessons and activities. For students who have internalized a negative self-
stereotype regarding expected performance in mathematics, these students are at risk
for actually achieving lower in mathematics through lower mathematics performance

expectancies (Bonnot & Croizet, 2007). This means that if teachers expect less from



28

their stereotyped students, many of those students will live up to their teacher’s low
expectations (Steele, 1997). This research ties in well with research on the self-fulfilling
prophecy hypothesis in which teacher expectations account for more variance in
changes in student achievement than prior achievement or motivation (Jussim & Eccles,
1992). It seems that teachers have a tremendous power to influence the state anxiety of
their students. By priming students with a message espousing the equal mathematical
abilities of girls and boys, teachers may alleviate unnecessary anxiety in their students

(Ben-Zeev et al., 2005; Steele, 1997).

For some, the presence of stereotype threat results in anxiety symptoms (Ben-
Zeev et al., 2005), such as higher levels of physiological arousal, such as heart
palpitations, perspiration or rapid breathing (Ashcraft, 2002). Yerkes-Dodson law
states that performance is at its peak when levels of arousal are moderate, and
performance decreases when arousal is either too high or too low (Keller, 2007).
Inzlicht and Ben-Zeev (2000) have suggested that anxiety and its accompanying
physiological symptoms may rise when an individual is faced with a stereotype threat.
For example, stating that males tend to outperform females on a particular mathematics
test would likely increase anxiety symptoms in some females beyond optimal levels and
negatively affects their performance. This theory of how stereotype threat affects
performance also ties in well with Ashcraft and Kirk’s (2001) theory of how the worry
and negative thoughts associated with anxiety interfere with optimal mathematical
performance. The good news is that these factors influencing the mathematics

performance of females and other stereotyped individuals are malleable; therefore,
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changing the negative features of mathematical learning environments can positively

impact performance (Ben-Zeev et al., 2005).

Today’s classrooms are more diverse than ever before. Some students may
experience disadvantages in the form of negative beliefs regarding their abilities.
Knowledge of the effect of stereotype threat is empowering to teachers because they
have the power to positively influence students who may be suffering from stereotype
threat. Failure to do so can have a lasting negative impact for students from
disadvantaged groups. Another factor for teachers to be mindful of in their mathematics
classrooms is the type of language being used to present and discuss mathematical

ideas (Boulet, 2007; Chapin & O’Connor, 2007).

The Role of Language in Mathematical Thinking
The use of language to discuss mathematical concepts is closely linked to

students’ understanding (Chapin & O’Connor, 2007). For the purposes of the present
study, review of the literature relating to the role that language plays in mathematical
learning is necessary in order to consider the impact of language on the learning of
mathematics, to evaluate currently employed assessment tools, and to aid in the

construction of alternative test items.

In Western culture, language and number systems are so closely tied together
that it is difficult to tease them apart. Vaidya (2004) states that the conceptual
understanding of numerosity is bound to the language system in that symbolic
representations are accessed in the mind through language. In a study to determine
infants’ understanding of number as distinct from language, Wynn (1992) found that

infants as young as three days old are able to discriminate among numerosities ranging
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between one and three, but no greater. Citing the work of Starkey (1992) and Wynn
(1992), Case and colleagues (1999) describe the quantitative capacities of infants as
being “...born with a natural sensitivity to number and can distinguish actions that
preserve the numerical value of small arrays from those that change it” (Case, Griffin, &
Kelly, 1999, p.135) By the age of four, most children develop a uniquely human
understanding of the concepts that adding gives more, taking away leaves less, and that
no action leaves the same quantity (Case, 1999; Starkey, 1992). The development of
hypotheses of separate number modules, one involving an approximate system (e.g.
more, less, same) and the other involving a precise system (e.g. one, two, three, four,
five) followed. The precise system for processing quantities has been suggested to be
more reliant on language than the approximate system (Chiappe, 2005; Gelman &
Butterworth, 2005). It has been suggested that it is the development of linguistic
number systems which allows human beings to work with numbers greater than four
or five (Carey, 2001). Chiappe (2005) states that there is consensus within the field that
the analog (approximate) system does not handle quantities greater than three. To test
these ideas, Pica and colleagues (2004) conducted studies of numerical concepts and
abilities with adults from cultures where linguistic number words were less precise
(e.g. one, two, few, many). Two important findings were uncovered with these studies.
First, despite the fact that participants utilized an approximate number system, the
participants were able to engage in number tasks involving integers as great as 80.
Secondly, participants quickly developed counting rules when placed in situations
where they were paid for their labour, suggesting that the underlying concepts for a

precise number system were already present but required more precise language in
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order to work efficiently with them. Gelman and Butterworth (2005) insightfully call to
attention that it is difficult to imagine how such rules could be developed so quickly if
the underlying concepts had not already been present. To a certain point, the role of
language seems unnecessary in the development of numerical concepts, however,
without language, mathematical thinking clearly remains basic (Gelman & Butterworth,
2005). Thus, mathematical language can be of critical importance in students’ learning
(NCTM, 2000). It is not any kind of language, but rather, mathematical language, which
is a powerful tool that can be used to help students learn complex material (Chapin &

0’Connor, 2007).

Mathematical language can be quite complex and some students struggle to
understand it. Unlike reading connected text, the meaning of a mathematical symbol
cannot easily be inferred by context (Pedrotty Bryant, 2005a). For example, to decode
the mathematical phrase (2 + 4) x (6 + 3), students must possess prior knowledge of
each of the number and operation symbols, whereas one may be able to infer the
meaning of an unknown word based on context clues in a literary text. However, Boulet
(2007) states that, “reading mathematical texts should be similar to reading ordinary
texts, in that the reader must transcend the code and comprehend the text’s meaning”
(p-6). This requires that the students and the teacher have a good grasp of numerical
symbols, operations, and concepts. One difficulty arises when educators use confusing
or ambiguous language to discuss mathematical ideas (Barwell, 2005). In her article,
Boulet provides examples of students who correctly apply mathematical procedures,
but who have very little understanding of the work they complete because they lack

conceptual knowledge. Particularly memorable, was Maxwell who wondered whether
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the phrase, “goes into”, in reference to a long division problem was similar to a numbers
car crash (Boulet, 2007). This example brings to light the way the language used to
discuss mathematics can either elucidate or conceal the underlying meaning.
Algorithms are not taught to frustrate students or to test their memory skills. The
purpose is that the algorithms assist students in solving real life problems. Language is
used to provide a meaning and purpose for mathematics. As Boulet (2007) suggests, in
Maxwell’s case, the teacher could have provided a real-world example along with
clearer and more meaningful language in order to help him make sense of the problem.
Language should provide the opportunity to make sense of algorithms, rather than
computing them mechanically like robots. As Kaput (1988) stated, “the language of
mathematics is both a means of communication and an instrument of thought” (as cited

in Boulet, 2007; p.4).

Language is required to facilitate the learning of mathematics with quantities
greater than four or five (Carey, 2001). Moreover, the use of language to discuss
mathematical procedures and concepts can either hinder or facilitate students’
understanding. As such, educators need to carefully scrutinize their use of language to
determine whether they are elucidating or concealing mathematical concepts with their

words.

Assessment of Mathematics Learning Disabilities

Overview of Mathematics Learning Disabilities
A learning disability in mathematics has many names. Often, the terms dyscalculia,

mathematics disorder, and mathematics learning disability (MD) are used

interchangeably (Fletcher, Lyon, Fuchs, & Barnes, 2007). The use of a variety of terms to
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discuss a single construct contributes to confusion in understanding the nature of
learning problems in mathematics (Berch & Mazzocco, 2007; Fletcher et al., 2007).
Dyscalculia is an older, less-used term and refers to a person who has an inability to
perform calculations (Pedrotty Bryant, 2005a). Practitioners have long relied on the
Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision
(DSM-IV-TR) criteria to assist them in making important diagnosis decisions (APA,

2000). (See Table 1 for the DMS-IV-TR diagnostic criteria relating to MD).

Table 1.
DSM-IV-TR Diagnostic Criteria for Mathematics Learning Disability

A. Mathematical ability, as measured by individually administered standardized
tests, is substantially below that expected given the person’s chronological age,
measured intelligence, and age-appropriate education.

B. The disturbance in Criterion A significantly interferes with academic
achievement or activities of daily living that require mathematical ability.

C. Ifasensory deficit is present, the difficulties in mathematical ability are in
excess of those usually associated with it.

Coding note: If a general medical (e.g., neurological) condition or sensory deficit is
present, code the condition on Axis III.

In Canada, there is not a federal definition of a Learning Disability (LD), since
educational legislation and policy falls under the jurisdiction of each individual
province and territory (Kozey & Siegel, 2008). Kozey and Siegel (2008) state that the
trend among the provinces and territories has been the adoption of features of the
Learning Disabilities Association of Canada’s (LDAC) definition of LD. Within Nova
Scotia’s (1996) Special Education Policy Manual (amended in October of 2007), it is
made clear that each school board has a responsibility to develop a process by which at-

risk students are identified, and assessed. Many Canadian provinces and territories,
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including Nova Scotia, maintain that a discrepancy between IQ and achievement is a key
feature of LD, despite that the discrepancy definition has largely been discredited by
recent research and is no longer considered a best practice for the identification of LD
(Kozey & Siegel, 2008; National Association of School Psychologists, 2003) which will
be reviewed in later sections. One unique feature within Nova Scotia’s special education
documents is the inclusion of a Response to Intervention (RTI) component for the
identification of LD (Kozey & Siegel, 2008; discussed in more detail in a following

section), which is an alternative to the traditional discrepancy model.

For the purposes of this paper, the terms mathematics learning disability and
MD (for short) will be used to refer to cognitive deficits inherent in children of average
intelligence who experience significant, specific, and pervasive difficulty in
mathematics, where said difficulty cannot be better explained by hearing and/or vision
problems, socio-economic factors, cultural or linguistic differences, lack of motivation
or ineffective teaching, although these factors may further complicate the challenges
faced by individuals with MD (Learning Disabilities Association of Nova Scotia, n.d).
Approximately 5-8% of the population has some form of cognitive deficit that interferes
with the learning of mathematics which may be sufficient to result in a diagnosis of MD
(Geary, 2004). MD may or may not be experienced in combination with another
disorder, such as Attention Deficit Hyperactivity Disorder (ADHD) or dyslexia (Pedrotty
Bryant, 2005b). There is some evidence that MD has a genetic component. Children are
ten times more likely to be diagnosed if one or both parents also carry a diagnosis of

MD (Fletcher et al., 2007; Geary, 2004). In addition, studies involving twins have shown



35

a substantial genetic factor for MD, especially for monozygotic (i.e. identical) twins, and

less of an environmental factor (Fletcher et al., 2007).

Assessment tools, such as the Wechsler and Woodcock scales, are used to
provide additional information about a student’s cognitive and academic strengths and
weaknesses. If assessment tools focus too narrowly on students’ calculation proficiency
and their skill at applying mathematical procedures, without specifically examining
their understanding of the problem, then it remains unknown whether or not students
truly understand the procedures they apply. Since the information garnered from
assessment tools are often given prime consideration for determination of a learning
disability, it is necessary to examine what has been written about MD. Following, this
information was related to the assessment tools used to inform educational
professionals of a student’s strengths and weaknesses in order to see whether or not
the tools actually assess the disorder in a valid way.

Some studies have suggested that working memory problems and severe
language deficits underlie mathematics disabilities (Ackerman & Dykman, 1995;
Fletcher et al,, 2002; Geary, Hoard, & Hamson, 1999). However, the conceptualization of
mathematics disabilities has typically been in terms of numbers and arithmetical skill;
the belief being that proficiency in computation is necessary to master prior to
advancing in mathematics (Fletcher et al,, 2002). As noted in previous sections,
mathematics has a much broader scope than computation alone (Fletcher et al., 2007).
The way to define MD is crucial, because the working definition has a strong impact on
the research, assessment, and intervention strategies pertaining to MD (Fletcher et al,,

2002). Even the name “dyscalculia”, meaning an inability to perform mathematical
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calculations as a result of brain disorder (McKean, 2005), provides insight into the way

learning problems in mathematics have been defined.

Unlike the field of reading disabilities, in which phonological processing has
been identified as a core deficit and predictive of later reading achievement (Torgesen,
2002), mathematics researchers have yet to identify the underlying cognitive structures
that support success in higher-level mathematics, such as algebra (Geary, 2005).
Difficulties in mathematics are considerably less understood than those in the reading
disabilities field (Pedrotty Bryant, 2005b). Mathematics has grown in the last hundred
years to include between 60 and 70 distinct branches (Devlin, 2000). Due to the vast
span within the mathematics field, it is unlikely that a single cognitive deficit could

explain mathematics disabilities as a whole (Chiappe, 2005; Fletcher et al., 2007).

Much research on MD has focused on the roles of working memory, automaticity,
and counting (Geary & Brown, 1991; Geary & Hoard, 2001). Concentrating on
automaticity and counting is troublesome because it relies on studies of low-level
mathematical skills (i.e. arithmetic) to inform researchers of the nature of mathematics
disabilities in general. Fletcher and colleagues (2007) suggest that due to the broad
scope of the field of mathematics, researchers should specify the area of mathematics
being studied, as the underlying cognitive correlates likely vary depending on which
area is under review (e.g. arithmetic, mathematical reasoning). Researchers within the
field (e.g. Fletcher and colleagues, 2002; 2007) have acknowledged that the domain of
mathematics extends beyond computation. However, Fletcher (2007) goes on to
propose that it is due to the complex nature of calculation skills that researchers have

been unable to identify the core cognitive correlates underlying MD. One of the
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fundamental propositions of this paper shall be to challenge the notion that
arithmetical skill is the best indicator of mathematical ability, and that it therefore is

unlikely to be the best area of study to determine the core deficits of MD.

Research on counting skills has emphasized the student’s progression from
using low-level strategies and building up to the automatic retrieval of number facts
(Geary, 2004; Geary & Hoard, 2001). In the early stages of learning addition, children
tend to employ a relatively simplistic strategy; they generally add numbers by counting
from one, known as “counting all.” Following mastery of this strategy, students begin
using a “counting-on” technique, whereby counting is begun from the highest addend.
This advancement in strategy normally occurs in the absence of explicit instruction on
counting procedures (Geary, 2004; Geary & Hoard, 2001). With practice and repetition,
many students eventually recall number facts quickly and automatically from memory.
The underlying assumption, though not explicitly stated, seems to be that, changes in
strategy, building up to automaticity, corresponds with greater understanding and this

progression constitutes an aptitude for mastering higher-level mathematical concepts.

Some researchers believe that automatic retrieval of facts is necessary in order
for students to understand higher-level mathematics (Fletcher et al,, 2002; Gersten,
Jordan, & Flojo, 2005). According to these researchers, it is thought that if students are
unable to retrieve number facts quickly and accurately from memory, these retrieval
deficits are detrimental to developing their ability to learn more complex mathematical
concepts. Gersten and colleagues (2005) describe the importance of the quick retrieval
of number facts for the importance of learning higher-level concepts as follows. As

students progress in their school years, they encounter mathematics problems in which
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the focus is no longer on algorithms. However, correct completion of an algorithm may
be necessary to solve a given problem. Teachers may assume students have already
computed a number fact and therefore continue a lesson, using the number fact as an
anchor. A student who remains stuck in the algorithm portion of the problem is often
unable to engage in or follow the remainder of the lesson. However, being a
computation wizard is not essential to success in mathematics (Devlin, 2000). Indeed,
many mathematicians have admittedly low computation skills and mechanically
following rules and procedures has little to do with the way mathematicians use
mathematics (Devlin, 2000; Romberg & Kaput, 1999). It is not speed of computation nor
skill in performing arithmetic calculations that predicts mathematical understanding
and knowledge, rather the ability to reason analytically, to measure, and to approach

problems creatively (Romberg & Kaput, 1999).

There is consensus in the field of MD that compared to research on reading
disabilities; MD research is still in its infancy (Fletcher et al., 2002). As such, there has
been some interest in using results of studies on reading disabilities to inform research
on mathematics disabilities (Chiappe, 2005; Kulak, 1993). Drawing from reading
research, one factor known to influence the development of successful reading skills is
the ability to read words quickly and accurately (Savage et al., 2005). It seems that
researchers in the field of mathematics have attempted to identify factors that mirror
the cognitive correlates known to influence reading skill. Within mathematics research,
there has been a focus on the development and progression of counting strategies,
culminating in automatic retrieval of number facts (Pedrotty Bryant, 2005a). This

assumption that fluid retrieval of number facts is a foundation for building proficiency
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in mathematics seems to parallel the research on the importance of quick and accurate
word recognition for the ultimate goal of comprehending text. In both cases, children
rely on lower-level skills (i.e. phonological knowledge and procedural knowledge) to
work through unknown words and number facts, eventually building up to automatic
retrieval, allowing for more cognitive resources to be spent on higher-level tasks such
as reading comprehension or solving word problems (Kulak, 1993). While it is wise to
use reading research to assist in the development of studies of mathematics disability, it
is important to keep in mind that learning problems in mathematics do not necessarily
share the same underlying cognitive processes. For example, Fletcher and colleagues
(2007) report that the phonological processing deficits typically found in children with
both MD and reading disabilities (RD) cannot account for the difficulty of retrieving
math facts from long-term memory. It seems then, that MD is in need of

conceptualization and research projects tailored to the specific nature of mathematics.

Butterworth (1999) suggested the possible existence of a “number module”,
referring to a section of the brain responsible for processing quantity (as cited in
Chiappe, 2005). Later research (Gelman & Butterworth, 2005) has suggested that there
are two number modules; one which is responsible for processing exact calculations
(the exact system), and the other for approximation (the analog system). The exact
system is thought to be influenced more by language and culture than the analog
system (Chiappe, 2005; Gelman & Butterworth, 2005). Interestingly, results from brain
imaging studies have found that during estimation tasks, the horizontal segment of the
intraparietal sulcus and the posterior superior parietal sulcus are activated (Gelman &

Butterworth, 2005). This area of the brain is a fair distance from classical language
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processing areas (Gelman & Butterworth, 2005). The exact number module is thought
to be responsible for processing numbers greater than four and essential in the
development of mature number representations and in understanding basic
mathematical concepts (Chiappe, 2005). This evidence provides support for the

importance of language in the learning of mathematics.

Although there have been numerous research projects dedicated to the study of
MD, a consensus has yet to be reached regarding academic skill deficits as well as core
cognitive deficits, although MD diagnoses typically fall into either the
computation/arithmetic category or the math reasoning category (Fletcher et al., 2007).
In light of this, there is still some variability in the practice of diagnosing MD. One such
difficulty in diagnosing MD is the lack of specifically designed assessment materials.
Often, children are diagnosed with MD based on intelligence and academic achievement
test scores taken together with other information including samples of classroom work,
and parent and teacher reports (Fletcher et al., 2002). A reliance on academic
achievement measures is problematic because the composition of mathematical
subtests may not be sufficiently sensitive to detect MD (Geary, 2005; Pedrotty Bryant,
2005b). Without knowledge of the underlying cognitive deficits of MD, it is difficult to
develop assessment tools that accurately test for the presence of MD. Furthermore,
children’s scores on mathematics clusters of academic achievement tests can be
inconsistent from year to year (Geary, 2004). It may be that inconsistencies reflect
difficulty with a specific concept or a different teaching approach, rather than the

presence of a learning disability (Geary, 2004).
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In addition to the problems inherent in relying on intelligence and academic
achievement tests to detect the presence of MD, the use of conventional standardized
assessment instruments have many well-known drawbacks. Not only have people of
diverse backgrounds been consistently over-diagnosed (Fletcher et al., 2004), there are
also issues relating to the proper use of statistical procedures to determine the
presence of a learning disability, as well as the difficulty in drawing a line between
“garden variety” low achievers, those who suffer from low achievement without
neurobiological or other exclusionary causes, and those with true learning disabilities
(Rivera, 1997). A lack of subject matter specificity combined with the drawbacks
inherent in standardized testing increases the possibility of misdiagnosis.

The search for core academic and cognitive deficits affecting and explaining MD
lags behind the reading disabilities research base. Fletcher and colleagues (2002) call
attention to the fact that MD has rarely been studied beyond the scope of arithmetic and
numbers. Much past research has focused on the study of mathematics learning
disabilities by using numbers and arithmetical skill to inform researchers of the nature
of MD.

The study of MD has often focused on numbers and arithmetical skill. Since
mathematics is such a broad field, if researchers continue to rely on information
obtained through studies of calculation proficiency without examining knowledge of the
underlying processes or alternative formats of expressing knowledge, then the
information obtained from assessment tools will not accurately capture the full extent
of a student’s mathematical knowledge. If an assessment of students’ mathematical

understanding is not undertaken, the full extent of a student’s mathematical knowledge



42

is not tapped, and it may be unethical to diagnose a learning disability. An examination
of the history of intelligence testing, the different frameworks by which psychologists
collect information to determine learning disability status, and possible future
directions is necessary in order for the reader to grasp the present state of the practice

of diagnosing learning disabilities in general and mathematics disabilities in particular.

History of Mathematics Achievement Testing
Achievement testing has been happening since as early as 1894. As one can

imagine, many changes have taken place since that time. In education, it is often said
that as the pendulum swings from one generation to the next, often what appear to be
new ideas are simply old ideas repackaged (Linn, 2001). By studying the history of
achievement testing, indeed the history of anything, we come to understand better how
the present state came to be (Stearns, 1998). By taking the time to examine the history
of achievement testing, information is found on how far the discipline has come and

reminds us of good ideas that have been forgotten.

As early as 1894, records document the existence of mathematics achievement
testing. Between 1894 and 1911, there were at least four known psychological tests
that included an arithmetic component, developed by ].M. Rice, Alfred Binet, C.W. Stone,
and S.A. Courtis (Bryant & Pedrotty Rivera, 1997). Following this period, interest in
mathematics achievement testing continued to grow, with over 40 tests published
between 1915 and 1925 (Bryant & Pedrotty Rivera, 1997). Among the tests published
in this period, included is the Compass Diagnostic Tests in Arithmetic, developed by
Ruch, Knight, Greene, and Studenbaker in 1925. A noteworthy element of this test is the

volume of data it gathers. Contrary to some of today’s tests which consider only the
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correctness of the final answer, the Compass collected information on the student’s
comprehension of the problem, the student’s knowledge of information provided within
the problem, the student’s ability to pull out meaningful parts of the problem, the
student’s ability to estimate the answer, and finally, the correctness of the student’s
final answer (Bryant & Pedrotty Rivera, 1997). It seems that some of today’s testing

tools may lack the type of qualitative information gathered by tests like the Compass.

One purpose of assessment is to develop interventions tailored to the specific
needs of the student (Dawson & Guare, 2004). Some psychological tests, such as the
Wechsler Individual Achievement Test, Second Edition (WIAT-II) provide information
outlining the underlying skill each question seeks to measure. This type of information
helps school psychologists and other educational consultants to identify the type(s) of
questions that identify the student’s general strengths and weaknesses, but researchers
have cautioned against their use in the development of instructional plans due to over-
reliance on a small item set, disagreement over which skill items truly measure, and
that interventions are not tested for effectiveness prior to being recommended (Bryant
& Pedrotty Rivera, 1997; Hammil & Bryant, 1991; Parmar, Frazita, & Crawley, 1996;
Salvia & Yesseldyke, 1995; Taylor, Tindal, Fuchs, & Bryant, 1993). Other mathematics
achievement tests (e.g. Woodcock Johnson Tests of Academic Achievement, Third
Edition [W]-III] Math Fluency subtest) focus on the speed at which the student
produces answers to calculation questions. This type of test reveals how quickly a
student retrieves an answer from long-term memory, or the speed at which the student
calculates an answer, but does not facilitate suggestions for remediation. Bryant and

Pedrotty Rivera (1997) describe the purpose of norm-referenced tests in general as
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being developed to compare an individual student’s performance to that of a national
sample. These tests rely on a small number of test items to represent a student’s skill
level in a broad range of problem-types. Furthermore, they suggest that because norm-
referenced tests are not comprehensive assessments, they are ill used for constructing
instructional plans. This suggestion is in keeping with the National Council of Teachers
of Mathematics’ (NCTM, 1995) call for the use of a range of assessment methods for
evaluating students’ mathematical prowess (Bryant & Pedrotty Rivera, 1997). In today’s
reality of scarce resources and waiting lists, it is easy to see why professionals have
attempted to develop measures that may quickly and accurately provide information
about a student’s difficulties in a particular academic area. However, it seems that
somewhere along the way, assessment tools became less explicit in their ability to
facilitate an examiner’s ability to identify highly specific knowledge gaps and areas of
difficulty and link this information to ready-made interventions. This type of testing
represents a clear shift from the types of tests used in days past.

Valuable information may be gained by studying the history of any subject. By
reviewing the history of achievement testing, it is uncovered that former tests of
arithmetical ability appear to be less mechanical than some of those in use today. In
particular, it seems that previous tests examined factors beyond the student’s ability to
produce a correct answer and used errors to identify and remediate a student’s
difficulties (Bryant & Pedrotty Rivera, 1997). Current achievement tests in widespread
use do not appear to facilitate educational professionals’ understanding of students’
difficulties nor do they appear to link well to remediation plans. Next, a commonly used

and well-debated framework for assessing learning disabilities is discussed.
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Traditional Assessment of Specific Learning Disabilities
There is much debate within the field of learning disabilities as to how a learning

disability is best defined (Fletcher et al., 2007). The classification model that a
psychologist selects determines the types of tests and procedures he or she uses to
determine a student’s learning disability status. In the context of the present study, the
use and perhaps over-reliance on tests that are heavily based on calculation to inform
practitioners of a student’s mathematical skills and areas of weakness is called to
attention in an effort to encourage practitioners to think critically about the way
mathematics is defined within their chosen assessment tools, and to encourage them to

select assessment measures that conceptualize mathematics in the broader sense.

Part of the DSM-IV-TR criteria outlines discrepancy analysis that involves
making sure that a child’s academic achievement is significantly lower than would be
predicted based on ability as a primary method for determination of learning disability
status. According to Fletcher and colleagues (2004), there are four basic tenets of
discrepancy analysis: (1) Discrepancy, (2) Heterogeneity, (3) Exclusion, and (4)
Presumption. Usually, ability is measured by an IQ test and achievement is measured by
an academic achievement test, such as the Wechsler or Woodcock-Johnson cognitive
and academic scales. Academic achievement scores are predicted on the basis of one’s
I1Q scores (i.e. ability) and compared to the scores of the normative population. A
clinically significant discrepancy is determined by a statistical formula, whereby a
student’s academic achievement falls approximately two standard deviations below
what would be predicted based on performance on the intelligence test. Heterogeneity

refers to the various academic areas that a student may struggle in. A child may have a



46

learning disability in one or more of the following specific areas: reading, mathematics,
written expression, and language (Fletcher et al., 2004). The exclusionary tenet
describes various other causes that cannot be at the root of the problem in order for the
problem to be classified as a learning disability. For learning disability status, the cause
of the learning problem(s) may not be due to a “sensory disorder, mental deficiency,
emotional disturbance, economic disadvantage, linguistic diversity, or inadequate
instruction” (Fletcher et al., 2004). The mental deficiency exclusion prevents anyone
with below average intelligence to be classified as learning disabled. The presumption is
that achievement problems are believed to lie within the child, with neurological
problems that should not impact overall IQ at the root of the problems (Fletcher et al.,
2004). However, “it is widely recognized that the presence of [Q-achievement
discrepancy, an academic difficulty, and absence of the exclusions does not mean that
the child has a neurobiological disorder” (Fletcher et al., 2004; p. 310). Figure 4 shows a

graphic view of some factors that may affect academic achievement.
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Figure 4.
Factors Affecting Academic Skill Deficits (Fletcher et al., 2007)
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The discrepancy model has been heavily criticized in recent years. Of primary
concern is the typically lengthy passage of time that passes prior to a student obtaining
learning disability status, and therefore receiving access to additional supports and
services through the public school system, making the discrepancy model known as the
“wait to fail” model (Fletcher et al.,, 2004). The name comes from the gap that is
required between IQ and achievement before a student is considered sufficiently below
his or her peers, usually 2-3 grade levels behind the student’s current grade placement.
Clearly, this gap is frustrating for parents, school professionals, and the student.
Another common criticism of the discrepancy model is the high cost associated with it
because it requires a psychoeducational assessment, with an average

psychoeducational assessment costing thousands of dollars (Fletcher et al., 2004).
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There has been some movement away from a traditional discrepancy model towards a
model that does not rely on testing to provide access to treatment. Fletcher and
colleagues (2004) believe that many students’ difficulties may be remediated with high
quality, evidence-based intervention without psychoeducational testing. Fletcher and
colleagues (2004) suggest that the discrepancy model can be harmful to students due to
the fact that it delays intervention until performance is sufficiently low enough to
produce an [Q-achievement discrepancy. Torgesen and colleagues (2001) point out that
for many students, a learning disability is not identified with the use of the discrepancy
model until a later age, at a point where it is difficult for a student to catch up to their
same age peers. Since average-developing children are continuing to add to their
knowledge bases, a struggling child essentially has to work twice as hard in order to

catch up (Torgesen, 2002).

Those who uphold the discrepancy model argue that a learning disability cannot
be identified without some measure of cognitive functioning. Fletcher and colleagues
(2004) point out that continuing to propagate the use of the discrepancy model would
be to ignore the consensus reports from four major bodies of research within the
special education field, namely, the National Research Council’s report on the over-
representation of minority students in special education (Donovan & Cross, 2002), the
Fordham Foundation and the Progressive Policy Institute’s (2001) report on
“Rethinking Special Education”, the Learning Disabilities Summit by the US office of
Special Education Programs (2002), and the President’s Commission on Excellence in

Special Education (2002).
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Fletcher and colleagues (2007) propose a hybrid model for assessment of
learning disabilities, including a response to intervention (RTI) component, norm-
referenced academic achievement measures, and assessment of other non-academic
factors that may negatively impact a student’s achievement (Fletcher et al., 2007).
Fletcher and colleagues (2007) point out that assessment of adequate instructional
opportunities plays a key role in their hybrid approach. Diagnoses of learning
disabilities are made only after systematic instruction in the deficient area is delivered.
By contrast, a learning disability could be diagnosed using the discrepancy model based
on the results of an IQ test, achievement test, and with other qualitative information,

such as parent and teacher reports (Fletcher et al., 2007).

Standardized mathematical achievement tests are typically used to screen
children struggling with mathematics, but are not sophisticated enough to distinguish
between children whose struggles are of a cognitive nature or due to other factors, such
as inadequate instruction (Geary, 2005). Achievement tests differ from aptitude tests in
that the former measure a child’s current levels of academic achievement whereas the
latter measure a child’s current cognitive functioning. Therefore, we cannot conclude
that children who perform poorly on achievement tests lack the ability to understand
mathematical concepts or that their difficulties will persist. Indeed, Geary and
colleagues (1991) found that a single assessment finding low achievement did not
reliably predict low achievement scores in the future. Many students who performed
poorly on an initial assessment later went on to score within the average range. Geary
and colleagues (1991) conclude that low achievement scores in math in one year do not

necessarily indicate MD. In sum, we cannot equate a low achievement score with a
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disability (Fletcher et al., 2007), nor can we equate it with an inability to perform or to
comprehend mathematics; rather, low achievement scores are a cue to educational
professionals to look further into the potential causes of the problem rather than to

conclude that the problem lies within the child.

Stanovich (2005) argues that the use of the discrepancy model for identification
of learning disabilities is pseudoscientific, given that there is a lack of evidence to
support its continued use. Stanovich (2005) reviews the evidence in the learning
disabilities field relating to reading disabilities and shows that there is not a difference
in skill deficits between high 1Q and lower IQ students. This point is important because
children with lower 1Q’s are less likely to show a discrepancy between aptitude and
achievement, and thereby not receive a diagnosis of LD, which may exclude them from
receiving special education services (Stuebing et al., 2002). Also, children with lower
IQ’s and higher 1Q’s have both been shown to respond to high-quality, evidenced-based
instruction (Stanovich, 2005). Further, Stanovich (2005) states that IQ tests are not

necessarily a good measure of aptitude.

As mentioned before, the discrepancy model has been criticized primarily due to
the lengthy passage of time that sometimes occurs prior to a student’s academic
achievement scores being sufficiently low to produce a statistically significant
difference based on IQ test performance (Stuebing et al., 2002). This passage of time is
frustrating for all those involved with the struggling child, as well as the child. Waiting
to deliver high-quality, evidence-based intervention seems counterintuitive, especially
since we know that academic achievement problems that are not resolved early are

typically extremely difficult to remediate (Torgeson, 2001). Those who uphold the
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discrepancy model argue that a learning disability cannot be identified without a test of
cognitive ability. In terms of academic achievement, Geary’s (1991) research points out
that academic achievement scores may fluctuate from year to year and may not
necessarily indicate a learning disability. In order to address some of the problems
inherent in the discrepancy model, a newer framework, known as response to

intervention (RTI) has been adopted in some areas and is discussed in the next section.

Response to Intervention (RTI)
With the 2004 American re-authorization of the Individuals with Disabilities

Education Act (IDEA), each state has the right to include an RTI component in state
definitions of learning disabilities (Hale, Flanagan, & Naglieri, 2008; Stanovich, 2005).
Since most definitions of a learning disability include access to quality instruction as
one of the exclusionary criteria (Fletcher et al., 2004), the RTI model provides a
framework from which to assess students’ response to instruction. Fletcher and
colleagues (2004) describe the process as follows. Students are screened early in their
school career, either in kindergarten or grade 1. Those who score in the bottom 25-
30thpercentile are identified as at-risk, and provided with more intensive instruction.
Progress is carefully monitored, and those who do not benefit from increasingly intense
instruction may be identified as learning disabled. From the reading disabilities
research, neuroimaging studies have found that non-responders fail to activate certain
left-hemisphere areas known to be implicated in reading and instead show
predominant right hemisphere activation (Fletcher et al., 2007). The RTI model
provides a framework from which to assess a student’s access and response to quality

research-based instruction, whereas the discrepancy model does not provide a ready
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means for assessing this important component (Fletcher et al., 2004). The RTI literature
contributes to the present study in terms of knowledge of possible future directions

within the learning disabilities field.

There are many advantages to the RTI model. Recall that parents and families of
children with learning problems report being frustrated with the time-consuming
process of the discrepancy model. In the RTI framework, the focus changes from
determining eligibility for special education services to providing evidence-based
instruction to at-risk children (Fletcher et al., 2004). Additionally, the RTI model may
reduce the number of teacher-biased referrals. Researchers have noted the over-
population of minorities and male students in special education referrals (Burns &
Senesac, 2005; Fletcher et al., 2004; Hosp & Reschly, 2004). The RTI model reduces the
problem of teacher biases by screening all children rather than only those referred by
classroom teachers and other school professionals (Fletcher et al., 2004). For example,
using the discrepancy model, students from African American, Hispanic, and First
Nations groups are identified as LD at a disproportionate rate as compared to Caucasian
and Asian American children (Hosp & Reschly, 2004). However, within the RTI
framework, there is a more representative proportion of the population who are
identified as LD (Burns & Senesac, 2005). In addition, the RTI framework offers a ready
means by which to evaluate a student’s response to quality instruction, thereby
satisfying one of the exclusionary criteria. Namely, that the source of a student’s
academic difficulties cannot be due to inadequate instruction for the diagnosis of LD
(Fletcher et al,, 2004). “Including RTI as one of the criteria for identification allows

educators and parents to immediately provide students with well-targeted and much
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needed intervention rather than waiting for extensive, time-consuming assessments
that offer little or no information to inform instruction” (Fletcher et al., 2004, p. 312).
Traditional discrepancy based models have little usefulness in providing information
for planning interventions whereas inclusion of an RTI component allows more of a
focus to be on providing quality instruction to students, rather than on determining

eligibility for services (Fletcher et al., 2004).

In conclusion, the RTI model appears to offer a viable solution to providing
struggling students with access to evidence-based intervention at a time when their
difficulties are more likely to be remediated successfully. This model also provides a
ready means for testing one of the exclusionary criteria within the definition of most
learning disabilities: access to adequate instruction. Additionally, the RTI model may
provide practitioners with more valuable information for planning interventions than
that typically available via norm-referenced measures. The RTI framework also offers a
potential solution to the problem of referral bias. The RTI model appears to be very
promising and it will be interesting to track the progress and obstacles encountered by

areas that have already implemented RTI into their existing frameworks.

Curriculum Based Assessment (CBA)
Curriculum Based Assessment (CBA) can be used more frequently than

standardized tests. Due to potential practice effects, where a child may superficially
inflate his/her score due to familiarity with a particular item, rather than due to
increased skill, generally, a child may only be administered the same academic
achievement test within one year of the original testing date and within two years for a

test of cognitive ability. CBA was of interest to the present study not only because it
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represents an up and coming framework that is being used with increasing frequency,
but also to examine the types of questions and information it provides in comparison to

norm-referenced tests.

Curriculum based assessment tools are often employed when short-term
progress is monitored. The general purpose of CBA is to measure “a student’s skill
development toward (more) general outcomes” (Hintze, Christ, & Methe, 2006, p. 45).
Most forms of CBA break the curriculum into smaller chunks, focusing on a more
specific set of subskills. According to Hintze and colleagues, (2006), there are four types
of CBA: Curriculum-based assessment related to designing instructional programs
(CBA-DI); Criterion-referenced CBA; Curriculum-based evaluation (CBE); and
Curriculum-based Measurement (CMB). Practitioners select the appropriate subtype
based on the referral question. As Figure 5 shows, CBM is most often used for longer-
term tracking of academic goals, whereas the other three types of CBA are more useful
for measuring short-term progress.

Figure 5.
Different Types of Curriculum Based Assessment (CBA) Frameworks (Hintze et al., 2006)
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The rationale behind CBD-DI recognizes the academic diversity in the classroom.
Since a classroom is full of students with differing entry skills, using a single teaching
pace and instructional level almost guarantees that some students will be left behind.
The goal of CBA-DI assessments is to find the best instructional level for the child
(Hintze et al.,, 2006). Hintze and colleagues (2006) describe the procedure as follows:
Material is selected from the curriculum, usually something that is currently being
taught. Information is then collected on the student’s skill levels on various sub-skills
(e.g. counting skills, basic facts). The new information is then used to determine the
best instructional level for the student, such that he or she can be successful about 95%
of the time when working independently. Progress is carefully monitored and

instruction continues until the skill is mastered.

Using criterion-referenced CBA, students are tested over a three-day period,
using alternate test forms representative of the curriculum outcomes (Hintze et al,,
2006). The student’s performance is then compared to other students in the classroom.
This format is sometimes preferred since it provides information regarding an
individual student’s performance compared to other students in his or her class, rather
than compared to a national sample (Hintze et al., 2006). Other types of information
derived from criterion-referenced CBA include a description of the student’s skills in
the academic areas of interest, and error analyses (Freeman & Miller, 2001). Some
studies have found that teachers prefer the information derived from CBA than from

traditional norm-referenced tests (Chafouleas, Riley-Tillman, & Eckert, 2004).

When using curriculum-based evaluation (CBE), a general survey of the area of

difficulty is given, followed by more in-depth investigations. The goal is to identify
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which tasks the student is ready to learn based on his or her current knowledge base
(Hintze et al.,, 2006). According to Hintze and colleagues (2006), knowledge is broken
down into subtasks and strategies. Subtasks refer to the background knowledge and
skills a student must possess in order to engage in the task. “If a student is missing a
subtask component, he or she is missing one of the essential building blocks of the task.
If a student is missing a strategy component, he or she may have all the material
necessary to succeed at the task, but not know how to assemble it” (Hintze et al., 2006,
p. 50). Strategies represent the rules and procedures that a student must be
knowledgeable of in order to successfully engage in a given area. This type of analysis
breaks an area of difficulty down into smaller sub-parts and provides practitioners with
valuable information for understanding the students’ problems and what types of

knowledge gaps exist, in order to facilitate remediation.

Since curriculum based measurements (CBM) are less sensitive to smaller gains
within specific sub-skill areas, they are often used to measure long-term progress
(Hintze et al., 2006). When combined with other types of CBA, curriculum based
measurements can be part of a larger battery of assessments used to identify,
remediate, and track students’ progress. In CBM, students’ performance is compared to
local norms. By sampling a student’s proficiency across a range of items representative
of the curriculum, CBM can be used as a tool to assist practitioners in selecting the
appropriate level of instructional materials for students (Shapiro, Angello, & Eckert,
2004). CBM provides information that can help practitioners to make a variety of

educational decisions (Deno, 2003).
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Shapiro and colleague’s (2004) research suggests that CBA is being used with
increasing frequency for several reasons. First, some variations of CBA can be
administered more often to the student, and therefore provide more information on
growth in smaller areas that may not be captured with norm-referenced tests. Second,
some forms of CBA provide practitioners with information on how a student is
performing within the context of his/her own curriculum. This is in contrast to norm-
referenced tests which offer a rough approximation of curriculum, given that a
student’s performance is compared with a national, rather than local sample. Third, the
information garnered using CBA can provide educational professionals with
information regarding the best instructional level for the individual, thereby providing
aready means for linking assessment to intervention. Some drawbacks to using CBA
include the time commitment involved in creating separate forms for repeated testing,
as well as when the emphasis becomes on rote learning rather than understanding
(Sattler, 2001). Another framework which has been gaining increasing attention is that

of dynamic assessment.

Dynamic Assessment/Brief Experimental Analysis
Dynamic Assessment measures, and a related type of measurement known as

Brief Experimental Analysis, are used to inform intervention by endeavouring to
discover which instructional methods work for the individual child (Chafouleas et al.,
2004; Freeman & Miller, 2001). Rather than basing recommendations for remediation
on the students’ cognitive and academic profile alone, dynamic assessments test the
effectiveness of a particular intervention prior to making recommendations. Brief

Experimental Analysis measures are usually combined with CBM in order to identify
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the specific areas of weakness for the student with the ultimate goal of determining a
successful intervention (Chafouleas et al., 2004). The roots of Brief Experimental
Analysis come from functional behavioural analysis in which the effect of the
interventions are monitored to determine which will produce the greatest effect for the
student (Chafouleas et al.,, 2004), representing a systematic and longer-term
assessment strategy over that of limits testing. Within the context of the present study,
dynamic assessment models represent a different approach to testing that was in need
of consideration in order to think fully about how best to assess students’ mathematical

understanding.

Dynamic assessment tools are less used than traditional norm-referenced
assessment measures, and therefore the results have been found to be less familiar to
educational professionals. However, in Freeman and Miller’s (2001) study, special
education coordinators reported that the information garnered from dynamic
assessment tools were more useful for understanding students’ difficulties and for
planning intervention than norm-referenced measures. In fact, although norm-
referenced measures were rated by educational professionals as producing the most
familiar type of assessment results, the information was ranked as least helpful in
understanding students’ difficulties, and in intervention planning (Freeman & Miller,
2001). Educators’ ratings of the information provided by curriculum-based
assessments fell in between that of traditional norm-referenced assessments and
dynamic assessment models. Typically, the types of information collected from dynamic
assessment measures includes information regarding specific teaching strategies that

work for the student, a description of deficient thinking skills, information about
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strategies the child used prior to intervention, and information about how much

instruction the child required in order to succeed (Freeman & Miller, 2001).

Although dynamic assessment measures are used less often than other types of
assessment tools and the results are less familiar than those garnered by norm-
referenced tests, the results appear to be valuable to those who work closely with
students. By testing the effectiveness of a given intervention prior to offering
recommendations, psychologists are in a better position to be confident that their
recommendations will be successful since the effectiveness has already been tested
with the child. In addition, dynamic assessment models are useful for distinguishing
between learning problems and LD among English as a Second Language (ESL) students

(Sanez & Huer, 2003).

Conclusion
[ have discussed children’s early mathematical knowledge and how this

authentic approach to using mathematics to solve real-life problems is sometimes
replaced by a superficial approach to mathematics, in terms of symbols, rules, and
procedures. Mathematics encompasses the ability to think and to approach problems
creatively, to see and to work with patterns, and to use mathematics as a tool to aid in
one’s thinking. Clearly, the scope of mathematics and mathematical ability encompass
more than numbers and algorithms. There are many factors that affect performance in
mathematics, including anxiety and gender or cultural stereotypes. These are real,
though often invisible, threats that negatively impact mathematical performance for

some (Ashcraft et al., 2007; Royer & Walles, 2007).
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There are a wide variety of factors that affect learning and successful
performance in mathematics. There are also different assessment approaches used
within the field of educational psychology to determine the nature of students’ learning
difficulties. Academic skill deficits are often the first clue to teachers and other
educational professionals that a child may have a learning disability, however, as
discussed, there are other potential causes for the lagging skills that need to be
explored, in addition to the learning disability hypothesis. Some researchers (see
Fletcher et al,, 2004 for a review) have suggested that the discrepancy model should be
abandoned in favour of other classification systems for identifying LD. For example,
within the RTI model, there is a significantly less emphasis on IQ testing and more on
progress monitoring. Interestingly, this conceptualization of learning disabilities does
not change the fundamental concepts of discrepancy and unexpected
underachievement. The difference lies in the conceptualization of discrepancy as a
failure to achieve in spite of adequate instruction rather than due to discrepant ability
and achievement, given the expectation that most students can achieve when exposed
to high quality instruction (Fletcher et al.,, 2004). However, there are additional issues
that require further research, such as distinguishing a child with developmental delay
from LD and determining if it is possible for a developmentally delayed child to have
LD. In light of the problem with conceptualizing and assessing mathematical ability in
terms of calculation skill, the next section presents research questions aimed at

discovering new information to add to the field.
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Chapter 3: Research Questions

Purpose of the Study
Given that MD has largely been studied in terms of calculation skill and that the

ability to compute numbers efficiently is not necessarily indicative of mathematical
understanding (Devlin, 2000), the aim of the present research project was to review
critically an existing mathematics achievement measure and to develop and pilot seven
alternative test items that aim to measure mathematical thinking and understanding.
Past research has suggested that the ability to retrieve basic mathematical facts
automatically from long-term memory facilitates the learner’s ability to engage in
higher-level mathematics (Fletcher et al,, 2002, Gersten, Jordan, & Flojo, 2005). A focus
on speeded retrieval of mathematics facts has permeated both the classroom and the
psychoeducational assessment culture (Fletcher et al., 2002). While certainly the
importance of knowing mathematics facts is clear, it is less clear whether
psychoeducational assessment measures relying heavily on calculation provide
practitioners with sufficient evidence on which to base, even partially, a diagnosis of
MD (Parmar et al., 1996). It was hypothesized that the alternative test items would
provide educational professionals with a greater quality of information on which to
base important decisions, such as educational programming and determination of

learning disability status.

Less is known about mathematics difficulties and disabilities in comparison to
the reading disabilities research base. The aim of the present study served two basic
purposes. First, I critically examined a diagnostic tool used to assess mathematical

difficulties and MD. Past studies have found traditional mathematics assessment
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measures to be over-reliant on calculation-based problems in order to inform
educational professionals about the nature and severity of students’ mathematical
difficulties (Parmar et al., 1996). For example, in a review of mathematics assessment
tools, Parmar and colleagues (1996) found that of a mathematics inventory comprised
of 243 items and 8 subtests, 73% focused on arithmetical problems (Sequential
Assessment of Mathematics Inventory — SARI). They concluded that “the majority of
instruments and procedures used for assessment of students in special education do
not reflect important mathematics, nor do they provide information that will drive or
guide curriculum or instructional decisions (p.128).” The second aim of the present
study was to create and to pilot seven alternative test items, representing the type of
questions that access students’ mathematical thinking and understanding, beyond that
captured by measuring calculation skills. By evaluating the quality of information
garnered by assessment tools and contrasting it with that gathered by the pilot items,
researchers and practitioners are a step closer to understanding the complexities of
learning problems in mathematics and what types of questions are most apt to assess

mathematical knowledge.

Research Questions
The first research question seeks to test for any significant differences between

selected items from the WIAT-II (Numerical Operations and Math Reasoning subtests)
and the Pilot Items. By doing so, the researcher is able to determine whether or not the
WIAT-II items and the Pilot Items effectively measure the same or different constructs.
If there were not a statistically significant difference between the two item sets, this

result would suggest that the Pilot [tems do not measure a construct that is different in
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any meaningful way from what is measured by using the WIAT-II items. However, if a
significant difference were found between the WIAT-II items and the Pilot Items, this
result would suggest that the Pilot Items are tapping into a skill that is not captured by
the WIAT-II items. The validity of the Pilot Items was established by being evaluated
and approved by an experienced mathematics educator within the field and by an
experienced school psychologist who is knowledgeable of standardized assessments.
Also, the items were constructed with the NCTM criteria in mind, which additionally
contributes to the validity of the pilot items. A significant difference between the WIAT-
Il items and the Pilot Items would be noteworthy in the context of the present study,
because it would suggest that the Pilot Items represent a set of test items that could be
used to refine current mathematical achievement tests such that a greater emphasis

would be placed on mathematical thinking and understanding.

If the Pilot Items are found to measure a construct that is suggested to be
significantly different from that of the WIAT-II items, then it would be safe to conclude
that the two item sets measure different constructs. The WIAT-II Numerical Operations
items were developed to measure calculation skills whereas the WIAT-II Math
Reasoning items were developed to measure the application of math skills in context,
such as solving word problems. However, the work of Parmar and colleagues (1996)
suggests that some of the WIAT-II Math Reasoning items are improperly classified. The
Pilot Items were adapted from the existing WIAT-II items and modified to measure
mathematical thinking and understanding based on a review of the literature and in
particular the work of Ruch and colleagues (1925), Nancy Jordan (2006), David Geary

(1999, 2001, 2005), Lambdin and Walcott (2007), Jitendra and DiPipi (2003), Carpenter
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and Leher (1999), and the National Council of Teachers of Mathematics (1995, 2000,

2006).

The second research question seeks to determine the relationship between
calculation proficiency and mathematical understanding. The answer to this question
was of great interest in that it shed light on the importance of understanding in

students’ overall mathematical knowledge.

The third research question seeks to discover the extent to which the WIAT-II
mathematics subtests (Numerical Operations and Math Reasoning) align with the
assessment standards of the National Council of Teachers of Mathematics (NCTM). As
such, a critical examination of both the WIAT-II mathematics subtests and the Pilot
Items was undertaken using an evaluation rubric developed based on the NCTM'’s
Assessment Standards (1995) and rubric for evaluating large-scale assessment tools

(2006).

The fourth research question seeks to determine if any of the Pilot Items
measure the areas described by the NCTM and detailed in the rubric. The Pilot Items
were compared to the evaluation rubric and results are reported qualitatively. By
evaluating both item sets, new information relating to areas known to be of importance
to learning and successful performance in mathematics will be brought to light. In the
following section, [ will describe the procedures that were followed in order to answer

the research questions.
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Chapter 4: Methodology

Introduction
In the next section, I outline the research design for testing the research

questions and describe the manner in which the Pilot [tems and Evaluation Rubric were
constructed. Following, [ describe the ethical considerations that pertain to the present
study, the selection of participants, and the method by which the data were analyzed.

Finally, I close the method section with a summary of the chapter.

Research Design

The suggested test items were a modification of existing items, extracted from
the WIAT-II Numerical Operations and Mathematical Reasoning subtests. The original
WIAT-II items were selected on the basis that they represent typical test items
measuring basic calculation skills or word problems involving simple algorithms. The
level of difficulty for the items ranges from grade 4 to grade 6, according to the Nova
Scotia Mathematics Curriculum outcomes. One reason for testing older students is that
although 1Q’s can change over time, a certain amount of stability is usually found after
age 6 (Sattler, 2001). In light of this, the population of interest for the current research
study is upper elementary aged children, since this is the time frame in which children
are typically referred for psychoeducational testing. Testing time is an important
variable to be mindful of in today’s reality of scarce resources. Given that the Pilot Items
do not comprise a comprehensive battery, it is difficult to determine how they would
compare time-wise to an assessment with the full mathematics subtests of the WIAT-II.
However, it was observed that the Pilot [tems were completed within a typical time

frame. Future research will need to confirm this finding.



66

Construction of the Pilot Items
The construction of the Pilot [tems was based on the work of Ruch, Knight,

Greene, and Studebaker who developed the (1925) Compass Diagnostic Tests in
Arithmetic. This test contains a component which allows practitioners to assess the
student’s general understanding of the problem, the overall process, and the solution.
The Compass provides the examiner a moment-to-moment standardized procedure
which allows him or her to acquire information about the student’s thought processes
while working on a problem, rather than waiting until the end of a subtest before being
able to probe further into a child’s reasoning. Information is collected for each item and
compared to a set of 32 common error types in an effort to facilitate both
understanding of the student’s difficulties and the remediation of specific deficits. In
addition to the correctness of the solution, the Compass collects information on the
quality of the student’s estimation, as well as the caliber of the student’s comprehension

of the problem to inform practitioners of the nature of the student’s specific difficulties.

The work put forth by Ruch and colleagues (1925) provides the framework for
the development of the Pilot Items. The items developed by Ruch and colleagues tie in
well with present-day mathematical constructs, widely recognized to influence
mathematical knowledge, achievement, and understanding. For instance, the ability to
estimate the reasonableness of one’s solution relates to the concept of number sense
(Berch, 2005). Number sense is difficult to define, however, Nancy Jordan (2006), a
respected researcher within the field of mathematics learning disabilities, and her
colleagues are currently conducting a longitudinal study regarding number sense in

kindergarten-aged children. They assess number sense along the following constructs:
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counting skills, knowledge of relationships among numbers, nonverbal calculations,
estimation, and story problems (Jordan et al., 2006). Witzel, Ferguson, and Brown
(2007) state that number sense is to mathematics as reading comprehension is to

literacy; that is, the ultimate goal is one of understanding.

Children with lower-level counting skills have been found to have more difficulty
inhibiting irrelevant information when solving mathematics problems (Geary, et al.,
1999). For example, when retrieving a basic math fact, other facts may be triggered in
the student’s long-term memory. This additional information makes it more difficult for
the student to direct focus to the most important information (Geary et al., 1999). For
example, when solving the problem 4+5, the student may retrieve the correct answer of
9, or potentially 6, being the next number in the sequence, or 20, the product of 4 x 5.
On this basis, some of the Pilot Items include questions that tap into a student’s ability

to inhibit unessential pieces of information.

Geary (2005) states that assessment tools developed to measure children’s
mathematical understanding and ability are intimately linked to developmental
theories and children’s emerging competencies in these areas. Piagetian concepts that
are critical foundations of mathematical concepts and relations include the concepts of
object permanence (the understanding that an object continues to exist, although it may
be outside of one’s vision) and seriation (the ability to sort objects according to a
common characteristic; Rathus, 1988). These concepts occur in the concrete
operational stage, between the ages of 7 and 12, such that students in the present study
presumably have reached a sufficient developmental stage to solve the mathematics

problems selected (Rathus, 1988).
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Constructivist theorists believe that students develop their own math attack
strategies, which may be quite different from those presented by the teacher
(Lambdin& Walcott, 2007). Proponents believe that the students’ chosen strategies can
be more conducive to the individual’s thinking and reasoning style, and that much can
be learned from the manner in which the student chooses to approach the problem
(Lambdin& Walcott, 2007). Jitendra and DiPipi (2003) report that students with
disabilities tend to experience considerable difficulty solving word problems,
particularly with problem representation and identifying relevant information, along
with difficulties in identifying operations. This finding is not surprising given the
mechanical drill-and-practice approach common still in many classrooms. As such,
questions are developed for the pilot items that invite students to represent their
understanding of problems by drawing a picture, by selecting the appropriate operation
from a list, and by reporting which information is important to know in order to solve a

given problem.

The generation of a word problem from an algorithm requires the ability to link
abstract symbols with real-world concepts and suggests a deeper level of
understanding (Small, 1990). Hiebert (1984) states that this connection between
school-math and real-world context is commonly missing in many mathematics
classrooms. Children who are unsuccessful at making connections among mathematical
concepts view mathematical concepts in isolation (Carpenter & Leher, 1999) and
presumably would be unable to or have difficulty with transposing an algorithm into a
real-world problem. A student who is able to create a word problem which suits the

given algorithm demonstrates knowledge of and facility with the concept beyond that
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implied by basic calculation (Small, 1990). Similarly, a student who is able to extract the
correct numerical and operational symbols from a word problem and represent these
as an algorithm understands more about the concept than the student who is able to
compute the algorithm yet is unable to work with the problem in new ways (Small,
1990). As such, questions are included in the Pilot Items that explore a student’s ability
to generate a real-world question from an algorithm and ability to create an algorithm
from a given word problem. Please see Appendix A for a copy of the Pilot Items used in
this study.

To serve as a comparison basis, five items were selected from the WIAT-II
mathematics subtests. Two items were selected from the Numerical Operations subtest
measuring basic addition and subtraction skills using whole numbers (e.g. 135-22).
Also, three items from the Math Reasoning subtest measuring one’s ability to create and
solve multiplication and division problems using whole numbers were selected (e.g.
determining an average number of scores from a given word problem). The Pilot Items
were also developed based on these five WIAT-II items. The information gathered from

the WIAT-II items was compared to the information gathered with the Pilot Items.

Construction of the Evaluation Rubric
The rubric for evaluating the pilot items and WIAT-II mathematics subtests was

constructed based on aspects of the NCTM’s Large Scale Assessment Tool (2006). The
first factor refers to the content of the measure. On their website, NCTM (2006) states
that assessment tools should measure a broad range of mathematical processes, such as
problem solving and reasoning. For example, Parmar and colleagues (1996) reported

that of the mathematical achievement tests reviewed in the context of their study,



70

approximately 70% of test items measured calculation skills. Clearly, decisions
regarding a student’s mathematical skills should not be made on the basis of tests that
primarily sample one domain of mathematics. As such, reference is made within the
rubric to the range of content contained in the assessment tools.

The second factor pertains to the extent to which the assessment tool facilitates
the examiner’s awareness of the student’s process. The NCTM (2006) refers to this area
as accounting for the “messier” aspects of doing mathematics. Inspecting the student’s
process can be thought of as “error analysis.” Error analysis is concerned not only with
the final answer, but also with the quality and type of errors made (Borasi, 1994). This
type of investigation can provide information about a student’s mathematical thinking
and can be used to isolate and remediate problems (Borasi, 1994). Reference is made in
the rubric to examining the process a student undertook to solve the problem and takes
into account whether or not students are awarded points on this basis.

The third factor deals with the extent to which students are provided with
multiple options for representing their knowledge and understanding of problems. The
NCTM (2006) outlines this standard as one in which students are provided with test
items that maximize the likelihood that they are able to express what they know.
Examples of this listed by NCTM include things like providing enough white space for
students to record their responses, or the use of simple vocabulary. Taking this
standard one step further would include evaluating the extent to which items provide
multiple opportunities for students to represent their knowledge in non-traditional
formats. This concept refers to the degree of flexibility the test allows for

communicating one’s knowledge. For example, a test which allowed for students to
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demonstrate their facility with symbolic representation or their ability to produce a
picture to aid in problem solving is one which examines mathematical thinking beyond
that captured by a student’s ability to correctly apply a standard procedure.

The fourth factor looks at the time constraints imposed by the assessment tool.
The NCTM (2006) states that students should be allowed sufficient time to complete
their work, unless determination of the student’s efficiency is one of the goals of
assessment. As such, the influence of time constraints on students’ performance was
considered.

Finally, the fifth factor assists the examiner in determining the ease with which
assessment results are linked with intervention (NCTM, 2006). This is a key matter since
assessment does not end with diagnosis, but rather with the design and implementation
of meaningful interventions aimed at remediation of students’ areas of difficulty (Small,
1990). Frameworks such as dynamic assessment models represent the ideal method for
linking assessment to intervention since strategies are tested for effectiveness during
the assessment. Therefore, an informed intervention may be made, including
knowledge of strategies that are likely to be successful (or unsuccessful) for a particular
student. As such, I evaluated the measures to determine if any dynamic assessment
procedures are utilized as part of the standard procedure. Please see Appendix B for a

copy of the Evaluation Rubric used in this study.

Administration of Test Items
Testing was conducted in a quiet room with minimal distractions. The

researcher and student sat at the corner of a table such that the researcher was easily

able to observe and converse with the student. Once rapport was established, the
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researcher introduced the test items using a standard introduction such as that used in
the Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV). For example, “I
will be asking you to answer a number of different questions today, such as estimating
an answer to a math problem, or drawing a picture to show your understanding of a
math problem. Some of the questions may be really easy, but others may be more
difficult. It's important that you try your best on both the easy and the harder items. Do
you have any questions?” During testing, the researcher gave verbal praise to students,
such as saying “I can see you're working really hard!” such that students were
recognized for their efforts. Each test item was administered precisely according to the
format and directions described in the Pilot Items and in the WIAT-II manual. Upon
completion of the test items, the researcher thanked the student for participating and

answered any further questions.

Ethical Considerations
Participation in the present research project was completely voluntary and

participants were able to remove their consent at any time. Following approval from
Mount Saint Vincent University’s Ethics Review Board, initial contact was made with
two schools for students with Learning Disabilities in Nova Scotia. Due to the time of
year, both schools declined to participate in the study. Following, contact was made
with the Learning Disabilities Association of Nova Scotia (LDANS), which is an
organization for students with special needs in Nova Scotia. The purpose of the study
was presented to the Executive Director at LDANS and administrative consent was
received. LDANS staff identified students who fit the study’s criteria and approached

families about the possibility of participating in the present study. Interested
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parents/legal guardians had the opportunity to ask questions of the researcher and
signed consent forms to allow their children to participate in the study. Participation in
the study was both confidential and voluntary. Although the researcher knows the
identity of the participants, the final thesis does not contain information that in any way
reveals the identity of a participant. Upon completion of data collection, raw data was
coded such that no information that could identify a participant was present on the
working data forms. Upon completion of the study, data will be stored in a locked
cabinet in a locked office on the premises of Mount Saint Vincent University for five

years.

Once parental consent was received by LDANS, the researcher contacted the
parents/legal guardians to schedule times for the researcher to meet with the students.
The purpose of the research was presented to the students in age-appropriate language
and they were given the opportunity to ask questions. If the student wished to
participate in the study, he/she signed an assent form documenting his/her desire to
participate. Students understood that their participation was completely voluntary, that
there would be no penalty for refusing to participate, nor for withdrawing their

participation at any time during the study.

Selection of Participants
Randomization serves the purpose of creating roughly equal groups. However,

when using a sample population of less than 5 participants, randomization may have
insufficient power to produce roughly equal groups (Smith & Davis, 2003). In the
present study, using a sample of 5 participants was the target and was justified due to

time and availability constraints of participants, as well as the purpose of the study.
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Recall that the purpose of the study was to test examples of assessment items that
access a student’s level of mathematical understanding. Therefore, a within-subjects
comparison was preferable since it would hold variables such as 1Q and exposure to
quality instruction constant, since these factors remained constant throughout each of
the measures. Also, this controls for between-subjects factors that could account for the

within-subjects variance.

All participants were enrolled in an organization for students with special needs.
Piloting the test items with students diagnosed with learning disabilities was preferred
since doing so ensured IQ to be in the Average range of ability (i.e. Standard Score FSIQ
=90 - 109). Since current local diagnostic practices pertaining to Learning Disabilities
employs the Ability-Achievement Discrepancy model, a student’s intellectual
functioning must fall within the Average range in order to attain Learning Disability
(LD) status. Also, if participants have been diagnosed with LD and are able to perform
well on the Pilot Items but not the original WIAT-II items, this finding would
demonstrate students’ understanding of mathematical concepts that is not captured
with this measure. The grade level ranged from completion of grades 5 and 6 within the

Halifax Regional Municipality.

In order to consider generalizability of the results in terms of gender, a sample,
which included both male and female participants, was preferred. Additional
demographic information collected includes gender, age, ethnicity, and any diagnosed
medical or mental health disorders (e.g. LD, ADHD). The parents of the participants
provided the demographic information. Past research has suggested that Japanese and

Chinese children outperform their European and North American counterparts on tests
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of mathematical skills (Devlin, 2000). One reason suggested for this phenomenon is that
the counting rules of the Chinese and Japanese languages appears to facilitate the
learning of place value, counting, and computation more so than the English, French, or
Spanish languages (Devlin, 2000). As such, it was of interest to collect data regarding
the ethnic background of each of the participants in the study. In terms of age, this
information is of interest in that older students may perform better than younger
students, perhaps due to the greater number of years of instruction and experience
with the subject matter. Although the Pilot Items are designed to be accessible to
students ranging in grade from 4 to 6, age is an important variable that may influence
the results of the study and therefore was in need of consideration. Information on
diagnosed medical and/or mental health conditions allowed the researcher to consider
the implications that diagnoses may have on the results of the study. A diagnosis of MD
was preferred, as it would have allowed for a purer sample and increased the strength

of the research findings, however, was unavailable.

A within subjects comparison helps to control for error variability, thereby
allowing the researcher to attribute more of the cause of the difference in type of
information collected to the independent variable (Smith & Davis, 2003). Error
variability refers to other factors, such as individual differences between participants
that may cause a change in the dependent variable (Smith & Davis, 2003). In this case,
because the same subjects are tested with two different measures, and their individual
characteristics remain constant over both measures, any variability in the quality of
information garnered is presumed to be due to the test items, rather than due to other

factors. Testing two separate groups of students and comparing the data gathered by
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each of the testing tools would not provide a reliable source of information, since the
variability in the type of information collected could easily be due to individual
differences between the participants. In a within-subjects comparison design, these
factors remain constant, thereby allowing the researcher to attribute more of the

variance to the independent variable, in this case, the type of assessment measure.

Data Analysis
The first research question seeks to determine whether or not there is a difference

between the types of information collected by each of the assessment tools. The
independent variable is the type of assessment measure and the dependent variable is
the information gathered by the assessment tools. Researchers often prefer a single
independent variable when new areas are being investigated (Smith & Davis, 2003).
Two types of measures were used to answer this question. In the first measure,
participants were administered five selected items from the WIAT-II Numerical
Operations and Math Reasoning subtests. In the second measure, participants were
administered the newly developed Pilot Items. A paired samples t test is implicated for
this type of experimental design, since there is one independent variable and two
dependent variables that are on a continuous scale. Since participants were tested
twice, and the tests yield continuous data, a paired t test is most appropriate to analyze
the data collected. However, due to the limited number of students who participated in
the study, the results of the t test were rendered meaningless. As such, differences
between participants’ performance on each of the item sets are reported qualitatively.
Table 2 presents a pictorial summary of the research design for the first research

question.



77

Table 2.
Experimental Design of Research Question 1
Independent Variable (Assessment Tool)

Measure 1 Measure 2
Original WIAT-II Items Pilot Items

The second research question seeks to determine the relationship between
calculation proficiency (as measured by the WIAT-II items) and mathematical
understanding (as measured by the pilot items). To measure this relationship, a
Pearson product moment correlation would be most appropriate. If the analysis
revealed that the Pilot Items and WIAT-II items had a strong positive correlation, this
would suggest that both item sets measure the same construct and indicate convergent
validity between the assessment tools. Convergent validity occurs when two different
measures assessing the same construct are highly correlated (Crocker & Algina, 1986).
In the context of this study, a moderate to strong negative correlation would indicate
that calculation proficiency does not necessarily demonstrate mathematical
understanding. As with the first research question, due to the small number of
participants who took part in the study, the results of the correlation became of little

value. As a result, the relationship between the two item sets is discussed qualitatively.

The third research question seeks to assess critically the mathematics subtests,
Numerical Operations and Math Reasoning, from the WIAT-II. This measure of
academic achievement is widely used by school psychologists in the Halifax Regional
School Board, across the province of Nova Scotia, and throughout Canada and the
United States. To evaluate these subtests, a rubric was developed based on the NCTM’s

Large Scale Assessment Tool as well as the NCTM’s (1995) Assessment Standards. The
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WIAT-II mathematics subtests were evaluated based on adherence to the standards

outlined by the NCTM. Results are reported qualitatively.

The fourth research question seeks to determine if any of the Pilot Items
measure the areas described by the NCTM and detailed in the rubric. The Pilot Items

were compared to the Evaluation Rubric and results are reported qualitatively.

Conclusion

It is believed that both the Pilot Items and the Evaluation Rubric are consistent
with today’s efforts to emphasize understanding in the mathematics classroom.
Contrasted with previous generations’ tendency to focus on the correct answer, today’s
mathematical classroom is as much focused on mathematical understanding as it is on
finding producing correct solutions (NCTM, 2000). It was hypothesized that this
research would show that assessment tools lag behind today’s classroom in terms of the
emphasis unduly placed on computation problems to represent students’ overall
mathematical skills, knowledge, and understanding. A review of existing assessment
tools for diagnosing MD suggests there is a need for test items that tap into students’
mathematical thinking and understanding. As such, the present study seeks to pilot
seven alternative test items, developed from the existing WIAT-II items and modified
based on the work of Ruch and colleagues (1925), Nancy Jordan (2006), David Geary
(1999, 2001, 2005), Lambdin and Walcott (2007), Jitendra and DiPipi (2003), Carpenter
and Leher (1999), and the National Council of Teachers of Mathematics (1995, 2000,
2006). The Pilot Items are aimed at measuring not only students’ ability to solve
calculation problems correctly, but also their conceptual knowledge and understanding

of the problem. It was hypothesized that these new items would assist practitioners in
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three ways: (1) they would provide more detailed information and facilitate
understanding of a child’s particular mathematical strengths and weaknesses; (2) they
would also, therefore, better assist in program and intervention planning, and (3) they
would help practitioners call to mind the limitations of information gathered by current
testing tools, thereby better distinguishing between computational difficulty and MD.
The Pilot Items test the effectiveness and feasibility of an easily accessible item set in
order to provide a greater wealth and depth of information for the practitioner and
ultimately to serve better the needs of the child. The present research project also
answers questions regarding the relationship between calculation proficiency and
mathematical understanding, the type of information provided by the WIAT-II
mathematics subtests compared to the guidelines of the NCTM, and the extent to which

the Pilot Items measure up against the NCTM standards articulated in the rubric.
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Chapter 5: Results

Introduction
With the present study, [ endeavoured to answer four research questions

relating to mathematical thinking and understanding. First, | describe the demographic
characteristics of the participants who took part in the study and then I outline the
findings for each of the research questions. With the first research question, [ wanted to
determine if there was a meaningful difference between the information collected by
the WIAT-II items and the Pilot [tems. In order to define further the knowledge between
these two assessment measures, | attempted to establish the relationship between
mathematical thinking and understanding and calculation skills. Then, I sought to
discover the extent to which the WIAT-II mathematics subtests and the Pilot Items
aligned with the assessment standards of the NCTM, as detailed in the Evaluation

Rubric. [ present my findings in the following section.

Participant Characteristics
A total of two participants took part in the present study. Participant A was a

Caucasian female, aged 12 years 8 months who had been diagnosed with Tourette’s
syndrome and a Language-Based Learning Disability. Total testing time for Participant
A was 10 minutes for both subtests. Participant B was a Caucasian male, aged 11 years
4 months who had been diagnosed with Attention Deficit Hyperactivity Disorder
(ADHD) and Developmental Delay. Total testing time for Participant B was 16 minutes

for both subtests. A summary of participant characteristics is presented in Table 3.
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Table 3.
Participant Characteristics
Ethnic Diagnosed Length
Age Sex Background @ Medical/Mental of
Health Testing
Disorders Time
Participant A 12 years,8 Female Caucasian Tourette’s 10
months Syndrome, minutes
Language-Based
Learning
Disability
Participant B @ 11 years,4 | Male Caucasian Developmental 16
months Delay, ADHD minutes

With regard to the participants, two unexpected limitations occurred. First, there
were fewer participants in the study than was originally planned, making it impossible
to conduct the anticipated statistical analyses. Second, although the criteria for the
study originally designated a diagnosed Learning Disability as a necessary component
for participation, a communication error resulted in testing being completed with
Participant B who had been diagnosed with Developmental Delay rather than a
Learning Disability. The error was not discovered until the testing had been completed.
Upon consideration of the situation, it was determined that although the data was not
from the anticipated population, there would nevertheless be value to include it in the
study. Despite the fact that Participant B was diagnosed with Developmental Delay
rather than LD, it was of interest to ascertain if differences would be detected between

performance on the Pilot [tems compared to performance on the WIAT-II items.
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Research Question 1

With the first research question, I sought to determine if there was a significant
difference between the type of information collected by five items selected from the
WIAT-II mathematics subtests (Numerical Operations and Math Reasoning) and the
seven newly developed Pilot [tems. Several qualitative differences appeared to exist
between the two item sets, including the target skills measured by each item, the
manner in which credit is awarded, and the manner in which problems are presented to
students. Whereas the Pilot [tems were developed with the goal of measuring
mathematical thinking and understanding (e.g. describe in your own words what
subtraction means), the selected WIAT-II items were aimed at measuring basic paper-
and-pencil computation skills (e.g. 42 + 15), and solving word problems involving
simple calculation (e.g. Johnny had 5 apples. His mother gave him 10 more. How many
did he have then?). Items from the WIAT-II subtest are coded as either 1 (correct) or 0
(incorrect) whereas the Pilot Items offered students the opportunity to receive partial
credit and were coded as 2 (best possible response), 1 (partially correct but missing
information), or 0 (incorrect). Also, the Pilot Items were presented to students in a
manner that allowed them to demonstrate and receive credit for partial understanding
of a given problem (e.g. identifying the correct operation necessary for solving 120-17)
whereas the WIAT-II items tended to focus on the final answer (e.g. producing the
correct response for the problem 120-17). Due to the differences described above
between the two item sets, it was suspected that a significant difference would be

uncovered.
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Conversely, the results of the first research question produced a statistically
insignificant result. Data from each participant was separated into two groups relating
to performance on the WIAT-II items and the Pilot Items. The average of each
participant’s score was calculated for both groups respectively. A paired samples t-test
was conducted to determine if a meaningful difference between the two groups existed.
A significant difference between the two groups (Average score on Pilot [tems vs.
Average score on WIAT-II items) was not found. The difference between participants’
performance on the Pilot Iltems and the WIAT-II items did not reach statistical
significance, t (1) = 3.174, p > .05. However, due to the small number of participants, it
was determined that this result could be misleading and thus the data were reanalyzed
qualitatively.

Participants’ performances are analyzed item-by-item and patterns will be
discussed in the following section. Table 4, found on page 86, presents a report of
participants’ scores on each of the items, including a description of the type of skill
assessed by each question. The assessment process began with the Pilot Items, as it was
suspected that these types of questions would put participants more at ease given that
they are not traditional mathematics test items.

Item 1.1 asks participants to look at the problem 47 + 64 and to describe in their
own words what the problem is asking them to do. A two-point response would have
included a response that made reference to each of the numbers, the operation, and
indicated that the two numbers should be combined to find a total. A one-point
response would emphasize procedure (e.g. first you add the right column). To receive

zero points, the participant would describe an operation other than addition. Both
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participants received a score of 1/2 on this item since responses indicated that adding
was the necessary operation but emphasized the procedure for solving the problem.
One difficulty with this item is that younger children might not possess the language
skills necessary to articulate a complete description of what the given problem is
asking, thereby masking understanding. In the future, this type of problem could be
avoided by having students select the most appropriate response from a list of response
choices.

Item 1.2 asks students to select a good estimate from a list of response choices to
the algorithm in the previous question (47 + 64). One of the distractor items is visually
similar to the correct response and was selected by Participant B, while Participant A
chose the correct estimate. This item is useful in that more distractor items could be
created and linked to common error types that students make. The pattern of responses
could then be linked to appropriate interventions.

Item 2.1 simply asks the student to name the necessary operation for a given
problem from a list of response choices. Both participants correctly responded to this
item. Item 2.2 delves deeper in asking students to provide a definition of the given
operation in their own words. Participant A received full credit for this item while
Participant B received partial credit. This item may also be negatively impacted by
difficulties by a lack of verbal skill by which to articulate understanding. This problem
might be revised in the future to have students select the most appropriate response
from a list of choices, as with the first item. Although there is merit in having students
produce their own definition of a given operation, the language demands may be too

great for younger students. For [tem 2.3, students are asked to create a word problem
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based on the algorithm from Item 2.1 (110-17). Participant A provided an excellent
response that concisely demonstrates the target quantities and operation, “She had 110
apples and she shared 17 of them”. Use of the word shared clearly shows knowledge of
the intended operation. Participant B’s response earned him partial credit for correctly
representing the operation, although not the given numbers. Both participants’
responses demonstrate some facility with the concept of subtracting, despite the fact
that neither was able to correctly solve a traditional subtraction problem. This duality
lends further support to the suggestion that the data collected by the Pilot Items and
WIAT-II items may indeed measure different constructs.

For the remainder of the items, Participant B was unable to produce either a
partially or fully correct response. Item 3.1 is a basic word problem involving averages,
except that it contains some extraneous information. It is not intended that students
solve the problem, but rather indicate what information is necessary to solve the
problem. To receive 2 points, a student would be required to indicate the necessary
information and not name any unessential information. Participant A knew that the
numbers needed to be added but could not provide any further details. This item could
perhaps be improved by asking the student to identify the piece of information that is
not necessary for solving the problem, as leaving the question as it is might emphasize
procedural knowledge moreso than understanding.

The final Pilot Item invites students to represent their understanding of a given
word problem either by drawing a picture or by writing a number sentence (e.g. 104 +
8). Participant A chose to represent her knowledge by using a number sentence and

completed the operation and part of the quantities correctly but chose the wrong
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divisor (104 + 15). As such, she received partial credit. The nature of the word problem
suggests that students who chose to draw would likely draw a calendar, thereby
facilitating the examiner’s awareness of their thinking procedure. However, further
scoring options would probably arise once the results of a standardization sample were
analyzed.

Both participants struggled with the WIAT-II items. Between the two
participants, only one item was answered correctly. The examiner’s record form
indicates that the skill measured by this particular item is one in which the student
creates and solves a division problem (Wechsler, 2005). Participant A provided a
correct solution to this problem. In some ways, this result is surprising given that
division is generally considered to be the most difficult of the four operations, therefore,
it is interesting that Participant A correctly responded to a division problem but not to
traditional multiplication, subtraction, or addition problems. One possible explanation
could be that since Participant A had completed grade 6 in the preceding few weeks, she
had likely spent time practicing division skills more recently than multiplication,
subtraction, or addition. This result suggests that despite the great amount of time
typically spent on the development of calculation skills (Romberg & Kaput, 1999),
students are still leaving elementary school without basic computation knowledge.

An interesting phenomenon is revealed when the responses of Participant B are
studied closely. Participant B’s answers to each of the WIAT-II items received a score of
0/5 whereas solutions on the Pilot Items received a total score of 5/14. Although
neither score is strong, the question becomes one of which assessment tool provides

more meaningful or actionable information. Performance on the WIAT-II items suggests
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a complete lack of knowledge while performance on the Pilot Items clearly
demonstrates some knowledge, albeit incomplete. For example, Participant B was
unable to solve the problem 120-15 correctly. However, on the Pilot Items, he correctly
identified that subtraction was the operation needed to solve the problem 110-17. Also,
he was able to describe in his own words what subtraction meant (“taking away”), for
which he received a score of 1 out of a possible 2 points. Further, he was able to make
up a word problem using the algorithm 110-17 in which he correctly represented the
necessary operation, although not the given quantities. This example demonstrates that
Participant B did not have a complete lack of knowledge regarding subtraction
problems, as suggested by performance on the WIAT-II items, but rather that
knowledge could be uncovered by using an alternative set of test questions, such as the
Pilot Items. When it comes to planning interventions, which, recall is a main outcome of
conducting assessments in the first place, it would be beneficial to have information
regarding what a student does know, as much as it is helpful to have information about
what a student does not know. By more closely examining Participant B’s responses to
both the WIAT-II items and the Pilot Items, it becomes obvious that there is in fact a
difference between the types of information collected by these two item sets.
Participant A showed a similar pattern of responses to that of Participant B. On
the WIAT-II items, Participant A received a total score of 1/5 while a score of 11/14 is
earned on the Pilot Items. Participant A received at least partial credit for each of the
Pilot Items, while only one correct response was produced on the WIAT-II items. On the
WIAT-II items, Participant A was unable to correctly solve the problems 37+54 or 120-

15, suggesting a lack of knowledge for both addition and subtraction problems.
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However, on the Pilot Items, Participant A was able to describe the process of addition,
to provide a reasonable estimate to a given addition problem, to identify the correct
operation for a subtraction problem, to provide an acceptable definition of subtraction
in her own words, to make up her own word problem where she correctly represented
both quantity and operation, to identify important information in a given word problem
involving averages, and to produce a partially correct algorithm for a word problem
involving division. Clearly, knowledge of addition and subtraction existed and was
accessed only when an alternative type of question was asked. Both participants
received higher scores on the Pilot [tems than they did on the WIAT-II items, lending
support to the hypothesis that there is a difference in the type of data collected by each
of the assessment tools. Table 4 presents an item-by-item report of the skills assessed

and participants’ performance on each item.

Table 4.
Item-by-Item Report of Participants’ Scores on the Pilot Items and WIAT-1I Items

Skill Item # Participant A Participant B
Ability to demonstrate 1.1 1/2 1/2

understanding of a problem
beyond simple computation

Ability to estimate the 1.2 2/2 0/2
reasonableness of one’s

response

Ability to identify the 2.1 2/2 2/2

appropriate operation to solve
a given problem

Ability to demonstrate 2.2 2/2 1/2
understanding of a problem
beyond simple computation

Ability to generate a word 2.3 2/2 1/2
problem from given algorithm

Ability to inhibit unessential 3.1 1/2 0/2
pieces of information

Ability to represent a given 4.1 1/2 0/2

problem using correct
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number and operation, or by
drawing a picture

Addition - multi digits, with 5.1 0/1 0/1
renaming

Subtraction - multi digits, 6.1 0/1 0/1
with regrouping

Create and solve 7.1 0/1 0/1

multiplication problem using
whole numbers

Create and solve division 8.1 1/1 0/1
problem using whole numbers
Create and solve 9.1 0/1 0/1

multiplication and division
problems using whole
numbers

As a result of the differences in types of questions asked, mathematical
knowledge was either highlighted or concealed. The Pilot Items allowed students to
demonstrate their mathematical knowledge beyond that accounted for by traditional
questions, such as those selected from the WIAT-II. Performance on the WIAT-II
suggested a severe lack of skill in the case of both participants; however, performance
on the Pilot Items verified that knowledge could be accessed by sub-dividing questions
into smaller sub-skills, thereby allowing students to show some understanding, despite
that knowledge being imperfect. Based on the results of the two participants in the
present study, there does appear to be a difference between the types of information
collected by each of the assessment tools. However, further research would need to
confirm this finding with a larger sample size. From the results of the present study, it
seems that a great deal of care is necessary when mathematical test questions are
developed in order to sufficiently capture students’ mathematical skill, knowledge, and

understanding.
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Research Question 2

The purpose of the second research question was to determine the relationship
between mathematical understanding (as measured by the Pilot Items) and calculation
skills (as measured by the WIAT-II items). With the first research question, I attempted
to determine if there was a difference between the two item sets, and with the second
research question, I endeavoured to refine our understanding of the relationship
between the two item sets. The result from the first research question suggests that the
Pilot Items and WIAT-II items do measure different constructs but more study is
required in order to draw a firm conclusion. In order to investigate further the
relationship between the two item sets, a Pearson product moment correlation was
calculated. The statistical analyses revealed that the relationship between the WIAT-II
items and the Pilot Items had a perfect positive correlation, r (1) = 1.00, p <.05. Very
likely, this result was strongly influenced by the small sample size. [t would be
interesting to determine what result would be produced in a larger study. The result of
this analysis suggests that both understanding and calculation prowess are important
aspects of overall mathematical knowledge and skill and we would expect them to be at
least moderately correlated.

With data from only two participants, it becomes difficult to provide a
meaningful conclusion to this research question. However, some hypotheses may be
developed as an outcome of the results at hand. Participant A answered only 20% of the
WIAT-II questions correctly while responses to 78% of the Pilot Items received either
partial or full credit. Conversely, Participant B answered none of the WIAT-II items

correctly and 35% of the Pilot [tems correctly. From these results, a hypothesis could be
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developed that as calculation skills increase (represented by performance on the WIAT-
Il items), so does mathematical understanding (as represented by performance on the
Pilot Items) given that the student who performed better on the calculation problems
also showed a significant jump in understanding. Alternatively, the data seem to
support the hypothesis that strong mathematical understanding is not necessarily
translated into strong calculation skills. It seems that mathematical understanding may
exist in the face of poor calculation skills, suggesting that there can be a difference in
these two areas. The implications in programming for students who show this pattern
of strong or some mathematical understanding with little calculation skill would likely
be different from a student who showed strong calculation skills but poor
understanding. While certainly it is difficult to draw any firm conclusions from such a
small sample size, it would appear that the greater wealth of information provided by a
measure such as the Pilot [tems puts educational professionals in a better position to
successfully remediate the individual differences faced by students struggling with
mathematics. Figure 6 presents a pictorial view of the results obtained by participants

on the WIAT-II items compared to performance on the Pilot Items.
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Figure 6.
A Pictorial View of Performance on the WIAT-II Iltems Compared to Performance on the Pilot Iltems

Calculation Skills

. Mathematics Understanding
Participant B |

—

ParticipantA L

0% 20% 40% 60% 80% 100%

At the outset of this research project, I posed the question as to what constitutes

mathematical skill and challenged the notion that calculation skills were a good overall

measure of mathematical knowledge, skill, and understanding. By examining

participants’ responses to problems from both item sets, a pattern began to emerge.

The pattern is one in which poor calculation skills are evident, and yet, there is a greater

wealth of mathematical understanding.

Romberg and Kaput (1999) state that within the first seven to eight years of
mathematics education, students are exposed to little mathematics beyond
computation. While clearly participants have developed some conceptual knowledge,
the finding that students who are entering grades 6 and 7 respectively are unable to
solve basic addition, subtraction, and multiplication problems correctly is cause for

concern. However, given that Participant B had been diagnosed with Developmental
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Delay, this could explain the poor calculation skills. Perhaps a sample of students who
did not have LD would provide an interesting comparison group. Despite the fact that
so much time is spent on developing calculation skills, still, some students at the late
elementary and early junior high levels remain unable to perform even the most basic
arithmetic. Previous research (e.g. Moss & Case, 1999; Fennema et al,, 1993) has
demonstrated that computation skills can be improved when teachers work to augment
students’ existing knowledge bases and when strategies are taught for solving
calculation problems rather than the development of rote knowledge. The results of the
present study suggest that the time has come for a shift in teaching strategies. While the
development of computation skills should not be the only goal, most students should
nevertheless be competent in solving such problems by the time they reach late

elementary or junior high school.

With the second research question, it was my goal to describe in more detail the
relationship between calculation skills and mathematical understanding. Although the
small number of participants prevented any meaningful statistics from being calculated,
the data nevertheless yielded some interesting results. Both participants performed
better on the measure of mathematical understanding compared to performance on
calculation skills. This result demonstrates that mathematical understanding may exist
despite sub-par calculation skills. The specific nature of students’ mathematical
difficulties is important information for educational professionals to possess in order to
effectively remediate students’ mathematical difficulties. Although the second research
question was not carried out exactly according to plan, the data show that mathematical

understanding may exist despite poor calculation skills.
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Research Question 3

With the third research question, I sought to determine the extent to which the
WIAT-II mathematics subtests (Numerical Operations and Math Reasoning) aligned
with the (1995) Assessment Standards of the NCTM and Large Scale Assessment Tool
(NCTM, 2006). This goal was accomplished by applying the factors contained within the
Evaluation Rubric to the mathematics subtests of the WIAT-II. Five factors emerged as
pertinent to the present study; namely, Content, Process, Knowledge Representation,
Time Constraints, and Implications for Learners. Each subtest was evaluated along the
five above-mentioned strands and given an overall rating of either Exceeds Expectation,
Meets Expectation, or Needs Improvement. Results relating to the Numerical
Operations subtest will be reported first, followed by the results for the Math Reasoning
subtest.

The first factor relates to the Content of the subtest, referring to the range (i.e.
broad, basic, or limited) of mathematical processes and concepts measured by the test.
For the purposes of this project, the construct of mathematical processes refers to the
execution of calculations whereas the construct of mathematical concepts refers to the
understanding of a mathematical idea. For example, a student correctly carries out the
procedure for solving a long-division equation (mathematical process) and also has a
solid understanding of division itself (mathematical concept). Of course, one of the
major premises of this paper is the idea that a student may possess the skill to apply a
mathematical procedure yet have little or no understanding of the concept.

Alternatively, conceptual knowledge may exist despite a failure to effectuate a
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mathematical procedure correctly. The best test will be one which accounts for both
mathematical processes and concepts.

In the examiner’s manual, the WIAT-II test developer describes the Numerical
Operations subtest as assessing “the ability to identify and write numbers, count using
1:1 correspondence, and solve written calculation problems and simple equations
involving the basic operations of addition, subtraction, multiplication, and division”
(Wechsler, 2005, p. 59). Upon reviewing the Numerical Operations subtest, it was
determined that a broad range of mathematical processes are indeed assessed using
this tool. In concordance with the test developer’s description of the Numerical
Operations subtest, fewer mathematical concepts appear to be assessed with this
subtest. While a rudimentary conceptual understanding is presumed to be necessary to
complete the problems correctly, it is conceivable that a student with very little
understanding is able to complete the problems correctly. In this scenario, the test
would overestimate a child’s true mathematical prowess. A list of the skills measured
by the Numerical Operations subtest, as described in the WIAT-II protocol, appear in
Table 5. As can be seen upon viewing Table 5, a drawback to this subtest may be the
relatively small number of items measuring each skill. This phenomenon has been
reported in previous research (Parmar et al,, 1996). Due to the broad range of
processes yet relatively smaller range of concepts measured by the Numerical
Operations subtest, it receives a judgement of Meets Expectation (measures basic

mathematical processes and concepts).
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Table 5.
Skills Measured by WIAT-1I Numerical Operations Subtest

Broad Skill Specific Skill

Number discrimination
Identifying missing
number in rote count
Writing single and
double digit numbers
Counting to 8 by rote
Writing number to
correspond with rote
counting

Addition

Basic facts

Number of Items
Measuring Skill

Subtraction

Multiplication

Division

regrouping

Multi-digits, no 1
renaming

Multi-digits, with 3
renaming

Using single digit 1
decimals

Negative integers 1
Basic facts 2
Multi-digits, no 1
regrouping

Multi-digits, with 2
regrouping

With regrouping using | 2
decimals

Simple fractions with 1
common denominators
Simple fractions with 1
different denominators
Basic facts 1
Multi-digit and single 1
digit

Multi-digits 1
Simple fractions 1
Using decimals 1
Simple fractions and 1
whole numbers

Basic facts 1
Single digit divisor,no |1




Single digit divisor,
with regrouping

Multi-digits, with
regrouping

Simple fractions

Simple fraction by
whole number

With decimals

Calculating with
exponents

Calculating square root

Calculating percent

Solving simple
algebraic equations

Calculating pi

Calculating after
applying order of
operations

Solving complex
algebraic equations

Calculating square root
of exponents

Using basic geometry
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With the second factor, the variable of interest is Process, or the extent to which

the test facilitates the examiner’s understanding of the student’s process for solving

mathematics problems. Ideally, the test would enhance such knowledge and would

award points for a student’s demonstration of correct reasoning. In the least favourable

scenario, the test would award points solely for the correct response. To receive an

intermediate-level ranking, the test would provide an informal or qualitative

assessment of the student’s reasoning. The WIAT-II protocol encourages examiners to

record qualitative observations by using the provided checklist, reproduced in Table 6.
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Table 6.
WIAT-11 Numerical Operations Qualitative Observations Checklist

Writes incorrectly formed or reversed numerals

Uses fingers/aids for counting or calculating

Demonstrates automatized math facts when completing calculations

Converts math problem from horizontal to vertical presentation prior to calculation

Uses place value correctly during calculation so as to avoid “spatial” errors

Makes sequential errors in procedures for multi-step calculations

Follows sequential procedures correctly, but makes math fact errors

The student’s process is of interest to examiners in that it may shed light on
aspects of the problem that are well-known by the student and others which require
further development. This information is valuable for intervention planning because
time may be spent more effectively when it is focused on building students’ knowledge
based on what is already known and on targeting specific problem areas (for examples,
see Moss & Case, 1999). Further, “understanding the reason for the weakness is critical
in determining the most effective intervention” (Dawson & Guare, 2007; p.11).
Although a qualitative observations checklist is both provided and encouraged by the
test developer, the extent to which it enhances the examiner’s awareness of the
student’s process is limited. While the information provided may assist the examiner in
planning certain interventions, overall, the checklist is not specific enough to each item
as to the most common types of pitfalls that students encounter. For example, a student
who struggles to form numerals is clearly spending undue effort on an unintended task.
In contrast, a student who is unable to solve multi-digit subtraction problems involving
regrouping may be plagued by a number of difficulties not found in the checklist. Since
addition, subtraction, multiplication, and division problems encompass the bulk of the

Numerical Operations subtest, it would be of benefit to examiners, and ultimately to
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students, if more specific information were provided regarding common error-types in
these domains. Further, if suggestions for remediation were included based on error-
types, this would be exemplary. In addition, the checklist does not provide prompts that
help direct the examiner to probe further into the student’s rationale, which could
potentially highlight strengths and weaknesses. Beyond the qualitative checklist, the
Numerical Operations subtest does little to enhance the examiner’s understanding of
the student’s process nor does it credit students for correct reasoning. As such, it earns
arating of Needs Improvement (awards points only for correctness of final answer).
The third factor of interest is Knowledge Representation, or the extent to which
the test provides opportunities for students to demonstrate their mathematical
knowledge, skill, and understanding in non-traditional formats (e.g. drawing a picture).
This variable is of interest in that it may provide a venue by which to tap into students’
understanding and conceptual knowledge. Non-traditional formats for question
response provide greater opportunities for students to demonstrate knowledge, even if
the knowledge is incomplete. Given that the purpose of the Numerical Operations
subtest is primarily one in which calculation skills are measured, unsurprisingly, there
are no examples of opportunities to demonstrate understanding in non-traditional
formats. Test items are presented in a traditional paper-and-pencil format for solving
computation problems. No manipulatives or prompts to solve a problem in an
alternative manner are provided, however, the student is permitted to use scratch
paper at any time to work a problem. Students do not receive points for correct
reasoning on the scratch paper. Advantages contained within the test include that test

items are printed in a font-size that is easy to read and sufficient white space is
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provided by which to work out problems. Overall, the Numerical Operations subtest
earns a rating of Needs Improvement on the Knowledge Representation variable
(provides limited or no opportunity for students to represent their knowledge in non-
traditional formats).

The fourth factor is Time Constraints, or the extent to which students are
provided with sufficient time to solve the given problems. This variable is of interest in
that time constraints may add undue pressure to the student, thereby hindering
performance unnecessarily. Although some tests seek to measure the fluency with
which problems are completed, ideally, students would be provided with as much time
as they require in order to solve problems. At the opposite end of the continuum, all
tests would be timed. Intermediately, some time restraints would be imposed. Items on
the Numerical Operations subtest are presented in a non-timed fashion. The student is
instructed to complete as many items as he or she is able and to alert the examiner
upon completion. As such, a rating of Exceeds Expectation is awarded on this strand
(students are provided with ample time to complete test items).

The fifth and final factor relates to Implications for Learners, or the extent to
which the test facilitates the development of effective interventions based on the
student’s specific strengths and weaknesses. To earn a rating of Exceeds Expectation,
the test would incorporate a method for testing the effectiveness of interventions
during the assessment. To earn an intermediate rating of Meets Expectation, the test
would have to suggest areas for remediation based on the student’s performance on
general strands; however, strategies would not be tested for effectiveness during the

assessment. Finally, a rating of Needs Improvement would be incurred if test results do
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not link easily to intervention with no strategies tested for effectiveness during the
assessment. This variable is of particular interest because as previously stated; a key
purpose of assessment is to develop effective interventions (Dawson & Guare, 2004).
Due to the small number of items measuring each construct, it can be difficult to get an
idea of a student’s specific strengths and weaknesses although a general pattern can
usually be detected. Strategies are not tested for effectiveness during assessment;
however, strategies based on the student’s profile are available through supplementary
report writing software through the test’s publisher. As such, a rating of Meets
Expectation is earned for this factor (performance on general strands suggests areas for
remediation but strategies are not tested for effectiveness during assessment).

Turning now to the Math Reasoning subtest and examining the first factor,
Content, which was assessed using the same criteria as described above for the
Numerical Operations subtest. The test developer describes the Math Reasoning subtest
as “a series of problems with both verbal and visual prompts that assess the ability to
reason mathematically. The examinee counts, identifies geometric shapes, and solves
single and multi-step word problems, including items related to time, money, and
measurement. The examinee solves problems with whole numbers, fractions or
decimals, interprets graphs, identifies mathematical patterns, and solves problems
related to statistics and probability” (Wechsler, 2005, p. 68). It appears that this subtest,
moreso than the Numerical Operations subtest, is designed to assess mathematical
thinking and understanding. Unlike the Numerical Operations subtest, a greater
number of items exist to measure a student’s skill in a particular field. However, a

smaller number of skills are measured on the Math Reasoning subtest than the
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Numerical Operations subtest. Indeed, 38 subskills are listed in the Numerical
Operations subtest compared to 14 subskills for the Math Reasoning subtest. On either
test, the same subskill may be assessed at multiple points with increasing levels of
difficulty, given that the tests are intended for use with people ranging in age from 4 to
85 (Wechsler, 2005). A list of the skills measured by the Math Reasoning subtest, as
described in the WIAT-II protocol, appear in Table 7. It is unclear as to why relatively
fewer subskills are measured on the Math Reasoning subtest compared to the
Numerical Operations subtest. Previous research on mathematics assessment tools (e.g.
Parmar et al., 1996) have criticized tests for focusing too heavily on unimportant
mathematics, namely, a disproportionate emphasis on calculation. As expected, many of
the items on the Math Reasoning subtest require the student to use calculations in
addition to “math reasoning” in order to receive credit. For example, a student would
have to possess some understanding of the following problem in order to determine
how to go about solving it, and would additionally require the skills to compute the

necessary calculation:
Find the average of Andrew’s four spelling test scores: 100, 85, 90, and 80.

Given that the Math Reasoning subtest contains a relatively small number of
skills being measured and that some of its items are somewhat impure, in that they
involve supplementary skills that are not necessarily the targeted skill being measured,
it earns a rating of Meets Expectation (measures basic mathematical processes and

concepts).
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Table 7.
Skills Measured by WIAT-1I Math Reasoning Subtest

Specific Skill Number of Items
Measuring Skill

Use whole numbers to describe quantities 5
Use geometric and spatial reasoning to solve 3
problems
Use grids or graphs to make comparisons, draw 5
conclusions, or answer questions
Create and solve addition and subtraction 3
problems using whole numbers
Use non-standard and standard units to measure | 3
Use patterns to solve problems 4
Solve problems using money 6
Tell time and use time to compare and order 4
events
Use quantities less than a whole 8
Use theoretical and experimental probability to 3
draw conclusions, answer questions, and make
predictions
Create and solve subtraction problems using 2
money
Create and solve multiplication and division 4
problems using whole numbers
Create and solve addition and division problems 1
using whole numbers
Create and solve multiplication and division 1

problems using money

Moving on to examine Process, the Math Reasoning subtest shares some similar

features with the Numerical Operations subtest. First and foremost, a qualitative

observations checklist is provided in the protocol by which examiners are encouraged

to note the following considerations in Table 8.
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Table 8.
WIAT-1I Math Reasoning Qualitative Observations Checklist

Uses paper and pencil to complete problem

Organizes work on scratch paper to facilitate problem-solving

Uses concrete aids (e.g. fingers) for computation

Breaks multi-step problem into smaller units to obtain solution

Disregards component(s) of word problem that is not required for solution

Uses correct operation(s) to compute solution

Uses repeated addition as a substitute for multiplication when problem-solving

Uses repeated subtraction as a substitute for division when problem-solving

Employs use of an effective strategy (e.g. working backwards, drawing pictures,
systematic guessing, or making a table) to solve a problem

As with the Numerical Operations subtest, students are permitted to use scratch
paper at any time to assist in solving a given problem. The difficulty being that since
questions generally call for a verbal response, much of the student’s process is not
visible to the examiner. As such, even if correct reasoning exists, the examiner may
remain unaware of it and the student does not receive credit for it. Also, the problem
with specificity of common error-types is present in the Math Reasoning subtest, as it
was in the Numerical Operations subtest. Meaning, that the qualitative observations
checklist does little to enhance the examiner’s awareness of the student’s process by
linking certain observations to specific items, common pitfalls, and suggestions for
remediation. In addition, students are awarded points only if the final response is
correct and as such, the Math Reasoning subtest receives a rating of Needs
Improvement on the Process variable (awards points only for correctness of final
answer).

The next factor is Knowledge Representation. Recall that with this factor, I
sought to evaluate the extent to which students are provided with multiple

opportunities to demonstrate their knowledge and understanding of a given problem.
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With earlier items intended for younger students, responses involve counting where
the student is shown a picture and told that touching the pictures while counting is
permitted, if the student desires. By testing the child’s knowledge in this manner, the
child is provided with the opportunity to use the pictures as an aid, or to simply
respond if the picture is deemed unnecessary for solving the problem in the child’s
opinion. As the items progress in difficulty, word problems are presented to the child
orally and are also printed on the test manual such that the child is able to follow along.
Presumably, the problems are reproduced such that the task becomes as much a
mathematics task, and as little a working memory task as possible. Although the picture
cues may provide students with the opportunity to demonstrate knowledge that they
otherwise would be unable to show, there are little if any creative, or non-traditional
attempts at drawing knowledge from a student, even if that knowledge is incomplete.
Creativity may be of underestimated importance if it were able to assist examiners in
drawing out knowledge that otherwise students were unable to produce. One possible
reason for the importance of creativity in knowledge representation is the anxiety and
discomfort that can come about when one is asked question after question for which
answers are unknown. The discontinue rules of many standardized tests are such that a
child must fail up to seven consecutive items before moving on to the next subtest.
While some children are unaware of these failures, others are highly cognizant of them
and show signs of embarrassment. Certainly, there are things that examiners may do to
alleviate such negative feelings, however, it remains plausible that without creative
attempts to draw out a student’s knowledge, he or she may feel unwilling to risk the

possibility of producing an incorrect response. Conversely, if the student believes that
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he or she could confidently answer at least a portion of the problem, perhaps this risk
would be more readily taken. These effects may be even more likely when working with
children who suffer from mathematics anxiety. Due to the limited opportunities built
into the test for obtaining the maximum of a student’s mathematical knowledge, a
judgement of Needs Improvement is given for the Knowledge Representation variable
(provides limited or no opportunity for students to represent their knowledge in non-
traditional formats).

The next factor, Time Constraints, considers the extent to which students are
provided with ample time by which to solve given problems. For the Math Reasoning
subtest, the examiner’s manual of the WIAT-II suggests that examiners should proceed
to the next item if students are not actively engaged in solving a problem following one
minute after presentation of the item (Wechsler, 2005). In this way, students are
provided with sufficient time to solve the problems but are not faced with undue
pressure to solve problems for which they do not have the skills to do so. As such, a
rating of Exceeds Expectation is assigned (students are provided with ample time to
complete test items).

Finally, the Math Reasoning subtest was examined based on its Implications for
Learners. Similar to the Numerical Operations subtest, general strengths and
weaknesses can be derived by examining the student’s pattern of passed and failed
items. This information would then be combined with other sources of information,
such as parent and teacher reports and classroom samples in order to form a more
coherent picture of the child’s skills and areas of need. However, strategies are not

tested for effectiveness during the assessment and as such, their effectiveness with the
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student cannot be guaranteed. As such, a rating of Meets Expectation is most
appropriate (performance on general strands suggests areas for remediation but
strategies are not tested for effectiveness during assessment).

The purpose of the third research question was to examine critically an existing
measure of mathematics achievement so as to provide an avenue through which
revisions may be suggested. The outcome was that both mathematics subtests of the
WIAT-II earned a rating of Exceeds Expectation on the Time Constraints factor, a rating
of Meets Expectation on the Content and Implications for Learners factors, and a rating
of Needs Improvement on the Process and Knowledge Representation factors. A

summary of the results for the third research question is presented in Table 9.

Table 9.
Summary of Results for Research Question 3

Factor Numerical Operations Math Reasoning Rating

Rating

Content Meets Expectation Meets Expectation
Process Needs Improvement Needs Improvement
Knowledge Needs Improvement Needs Improvement
Representation
Time Constraints Exceeds Expectation Exceeds Expectation
Implications for Meets Expectation Meets Expectation
Learners

Research Question 4
In an effort to remain as impartial as possible, the newly developed Pilot Items

were subjected to the same scrutiny, as was the case with the more established item set,
the WIAT-II. As such, the Pilot [tems were examined using the Evaluation Rubric with
the aim of determining the extent to which the Pilot Items aligned with the factors
outlined by the NCTM to be of importance for assessing mathematics (i.e. Content,

Process, Knowledge Representation, Time Constraints, and Implications for Learners).
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The first factor, Content, proved to be one in which the Pilot Items did not fare as
well as in other areas. However, this result is unsurprising given that the Pilot [tems
were developed with the purpose of testing the feasibility of an alternative item set
aimed at measuring mathematical thinking and understanding. As such, the Pilot Items
were not intended to be an exhaustive list, but rather, examples of items that might do a
better job of tapping into students’ mathematical knowledge bases. The Pilot Items
measure skills that were identified in the literature review based on historical
assessments of mathematics in combination with more modern constructs identified by
prominent researchers within the field (e.g. David Geary, Nancy Jordan). A list of the
skills measured by each of the Pilot Items appears in Table 10. Given that the pilot items
represent only examples of possible test questions, a broader range of items would
need to be developed if these types of test items were to be incorporated into
standardized assessment tools. As such, the Pilot Items warrant a ranking of Needs
Improvement in the area of Content (measures a limited range of mathematical

processes and concepts).

Table 10.

Skills Measured by the Pilot Items

Skill Item #
Ability to demonstrate understanding of a 1.1
problem beyond simple computation

Ability to estimate the reasonableness of 1.2

one’s response

Ability to identify the appropriate operation | 2.1
to solve a given problem

Ability to demonstrate understanding of a 2.2
problem beyond simple computation

Ability to generate a word problem from 2.3
given algorithm

Ability to inhibit unessential pieces of 3.1

information
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Ability to represent a given problem using 4.1
correct numbers/operation, or by drawing
a picture

The second factor, Process, is in many ways the crux of this research project. One
of the main objections to the currently used mathematics assessment tools is the all-or-
nothing classification of knowledge. Alternatively, the Pilot Items deconstruct
traditional mathematics problems such that students are provided with greater
opportunities to represent their knowledge, even if it is incomplete. The Process
variable is not interested in measuring students’ ability to memorize procedures, but
rather with test questions that capture students’ mathematical thinking and reasoning
processes. Certainly, there is some overlap between the Process and Knowledge
Representation variables. By providing students with more non-traditional formats to
represent their understanding of problems, reasoning is revealed. The point of
difference for the purposes of this evaluation is that non-traditional formats are the foci
on the Knowledge Representation variable whereas assessments of mathematical
reasoning are the foci on the Process variable. Figure 7 shows a pictorial representation

of the relationship between the Process and Knowledge Representation variables.
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Figure 7.
Relationship Between the Process and Knowledge Representation Variables

Test items provide greater opportunities for
knowledge representation

Greater information on strengths and needs is
collected

[t is believed that the Pilot Items do more to capture students’ thinking and
reasoning processes than traditional assessment tools. With the Pilot Items, reasoning
is accounted for by deconstructing problems into component parts, rather than focusing
solely on the correctness of the final answer. In doing so, students are provided with
opportunities and credited for understanding aspects of problems, even if the
traditional representation of knowledge is incorrect. For example, one participant was
unable to respond correctly to any of the selected items from the WIAT-II in which
students are awarded points only when the correct response is produced. However, this

same participant was able to demonstrate some understanding when tested with the
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Pilot Items. Indeed, the nature of the scoring criteria for the pilot items was such that
for most questions, students had the opportunity to receive partial credit for items,
unlike the WIAT-II test questions. This example demonstrates the grey area of learning.
Although the participant had not mastered the ability to recall addition, subtraction,
multiplication, and division facts; knowledge existed below the surface and was only
uncovered when a different type of question was asked. As such, the Pilot Iltems merit a
rating of Exceeds Expectation on the Process factor (measures and awards points for
correct reasoning).

The third factor, Knowledge Representation, provides an opportunity for the
Pilot Items to contribute to the existing gap in both research and practice. Recall that on
this variable, the WIAT-II mathematics subtests received a rating of Needs
Improvement, given that the test questions provided limited or no opportunity for
students to represent their knowledge in non-traditional formats. In many ways, the
very nature of the Pilot Items represents a somewhat non-traditional approach to
measuring mathematical knowledge. Traditionally, students are asked to solve a
computation problem or word problem and the correct answer is taken to indicate
mastery, which presumably would include understanding. However, as described
above, with regard to the pilot items, test questions are deconstructed such that the
items no longer measures one’s ability to carry out a mathematical procedure, but
rather one’s mathematical thinking and understanding. To do so, different approaches,
such as drawing a picture or creating a word problem from a given algorithm, are
included as acceptable forms by which students may convey their understanding of a

given problem. If the content of the test were expanded beyond simply a pilot study,



112

this would be an important variable to build upon. Due to the availability for students to
demonstrate their knowledge beyond traditional approaches, a rating of Exceeds
Expectation is awarded to the Knowledge Representation variable (provides many
opportunities for students to represent their knowledge in non-traditional formats).

The fourth factor, Time Constraints, did not differ among any of the tests
reviewed for the purposes of this study. Similar to the Math Reasoning subtest of the
WIAT-II, the Pilot Items were presented in a manner in which students were provided
with as much time as they desired to pursue any given problem. However, if it was clear
that a student was uncomfortable with a problem (e.g. broken eye contact, fidgeting),
then the examiner proceeded to the next problem while providing some
encouragement, such as saying “That one was tricky. This next one may be easier”. As
such, students were provided with ample time, yet were not pressured to solve
problems beyond their skill levels. As such, the Pilot Items receive a rating of Exceeds
Expectation on the Time Constraints variable (students are provided with ample time
to complete test items).

Finally, the Implications for Learners factor will be considered with regard to the
Pilot Items. Similar to the Content variable, this factor was negatively impacted due to
the small sample size of a pilot study being one in which initial ideas are tested for
significance prior to undertaking a study of more consequence. Ideally, common error
types would be developed, linked with suggestions for remediation, and tested for
effectiveness during assessment. Due to the small number of Pilot Items, it is difficult to
get a sense of a student’s pattern of strengths and weaknesses. As such, the Pilot Items

obtain a rating of Needs Improvement on the Implications for Learners variable (test
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results do not link easily to interventions and strategies are not tested for effectiveness

during intervention).

Overall, the Pilot Items were shown to contribute to the field of assessment of

mathematics achievement, albeit imperfectly. Indeed, the areas in which the Pilot Items

were poorly ranked were those in which the existing assessment measure received

greater ratings and conversely, the areas in which the Pilot Items were highly ranked

were those in which the existing measure lacked. Both measures received an excellent

rating on the Time Constraints variable. A summary of the results for the fourth

research question appears in Table 11 and a summary of ratings for both item sets

appears in Table 12.

Table 11.
Summary of Results for Research Question 4

Factor

Outcome

Content

Needs Improvement

Process

Exceeds Expectation

Knowledge Representation

Exceeds Expectation

Time Constraints

Exceeds Expectation

Implications for Learners

Needs Improvement
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Table 12.

Summary of Ratings for WIAT-II items and Pilot Items

Factor Numerical Operations | Math Reasoning Rating | Pilot Items Rating
Rating
Content Meets Expectation Meets Expectation Needs
Improvement
Process Needs Improvement Needs Improvement Exceeds
Expectation
Knowledge Needs Improvement Needs Improvement Exceeds
Representation Expectation
Time Constraints | Exceeds Expectation Exceeds Expectation Exceeds
Expectation
Implications for Meets Expectation Meets Expectation Needs
Learners Improvement
Conclusion

The results of the present study impart many interesting findings. Unfortunately,

the first two research questions, which sought to shed light on the relationship between

mathematical thinking and understanding and computation skills, proved to bring

forward statistically insignificant results. The small number of participants who took

part in the study undoubtedly influenced this result. However, qualitative analysis

suggested that there is indeed a difference between the types of information collected

by the assessment tools. Also, qualitative analysis of the second research question

suggested that mathematical understanding can exist in the face of poor calculation

skills. Future research will need to confirm these findings. The findings of the third and

fourth research question are also of a qualitative nature. By comparing the item sets to

the Evaluation Rubric, it was discovered that there are areas of strength and weakness

in each item set. While the WIAT-II items were superior in content and in linking

assessment findings to intervention, the Pilot items were more adept at assessing

students’ processes and in providing greater opportunities for knowledge
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representation. One item set makes up for what the other lacks and as such, it would
seem that an assessment tool that combined the most favourable aspects of each item
set would be exemplar. The results of these four research questions suggest ideas for
future research and add to the existing knowledge base in the field of assessment of
mathematics achievement. Figure 8 presents a summary of the research findings with

the central theme of mathematical understanding at the heart.

Figure 8.
Summary of Research Findings

Difference suggested between Mathematical understanding
data from Pilot Items and can exist in the face of poor
WIAT-II items calculation skills

Mathematical

WIAT-II items receive ratings Pilot [tems receive top ratings
of Needs Improvement on for Process, Knowledge
Process and Knowledge Representation, and Time
Representation variables Constraints variables
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Chapter 6: Conclusion

Recapitulation of the Context
Mathematics often gets a bad reputation; it frequently becomes less about

understanding and more about selecting the appropriate procedure or recalling a
particular fact (Hiebert, 1984). One of the reasons for this is that teachers and
researchers alike have tended to focus on the mechanical aspects of mathematics and
have failed to provide a real-world context for students to make sense of mathematics.
Despite an increased awareness of the need to incorporate mathematical understanding
into curriculum, mathematics has continued to be seen by many as limited to numbers,
algorithms, and the mechanical application of procedures that relates little to everyday
life (Carpenter & Leher, 1999). Teachers may feel unprepared to teach mathematics,
even at an early grade level (Chapin & O’Connor, 2007). As such, students may pick up
on teacher feelings of anxiety and in turn develop their own feelings of anxiety toward
the subject. Also, when teachers teach mathematics as they may have been taught (i.e.
without truly understanding the subject), they may use confusing language that makes
the task of making meaning out of mathematical procedures all the more difficult
(Carpenter & Leher, 1999). This reality is truly a shame, given that mathematics is a
fascinating subject that has the power to aid students not only in their future

mathematical pursuits, but also in other areas.

Within the domain of psychoeducational assessment of mathematics difficulties and
disabilities, much of the research has focused on the progression of counting strategies

to inform researchers of the nature of mathematics difficulties. This focus is too narrow
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given the broad scope of mathematics. Traditionally, assessment of learning difficulties
or disabilities has required the use of standardized aptitude and achievement measures.
There has been some movement away from this discrepancy model to include other
frameworks, such as response to intervention, curriculum based assessment, and
dynamic assessment. However, many districts continue to use the discrepancy model as
the primary source of data to inform stakeholders of the nature and severity of a

student’s learning problems.

Within today’s reality of scarce resources and diverse special needs, it is
paramount that researchers discover new ways of assessing students’ knowledge.
Widely used achievement measures assessing mathematical knowledge have been
questioned within the context of the present study, due to their over-reliance on
calculation problems to enlighten educational professionals of students’ areas of
strength and need (Parmar et al., 1996). These frequently used assessment tools have
also been criticized for their lack of ability in aiding understanding of students’
problems, as well as their deficiencies in linking assessment results to meaningful and
individualized interventions (Parmar et al., 1996). The aim of the present study was to
assess critically the mathematics subtests of a commonly used assessment tool (WIAT-
II) and to develop and test seven alternative test items that aim to measure
mathematical understanding.

It is hoped that this research project will be of interest to educational
professionals as it calls to attention several important issues in the domain of
psychoeducational assessment. The information gathered from assessment tools are

used to make decisions that are important in the lives of children and their families,
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including educational programming, classroom supports and accommodations, and
determination of learning disability status. As such, continuous efforts must be made to
ensure that assessment tools are of a consistently high quality. Currently used
assessment tools of mathematics achievement may be flawed and the present research
project seeks to address some of these blemishes. Past research has suggested that
studies in the area of MD assessment have typically focused on calculation and counting
skills (Fletcher et al., 2002; Parmar et al., 1996). Additionally, there has been a focus on
the development of calculation skills within the elementary school classroom (Romberg
& Kaput, 1999). The results of this study suggest that measuring calculation skills
disproportionately to the other branches of mathematics may not provide a good
estimate of a student’s mathematical knowledge, skill, or ability. The awareness that
important decisions are tied to the results of assessment tools combined with
awareness of the flaws inherent in some popular assessment batteries better arms

educational professionals to meet the needs of the students with whom they work.

Contributions to the Field

The present research project contributes to the existing literature base in a
number of valuable ways. First, a new measure was developed to assess mathematical
thinking and understanding. This tool was created based on the work of several
prominent researchers within the field, including the work of Ruch and colleagues
(1925), Nancy Jordan (2006), David Geary (1999, 2001, 2005), Lambdin and Walcott
(2007), Jitendra and DiPipi (2003), Carpenter and Leher (1999), and the National
Council of Teachers of Mathematics (1995, 2000, 2006). Since there was not an existing

measure of mathematical thinking and understanding by which to compare it to, the
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validity of the new measure was established through critique and revision according to
the expertise of two specialists within the field. Although statistical analysis was
unavailable as a result of the small number of participants in the present study, future
research may lend further support to the pattern of mathematical understanding
existing in the face of poor calculation skills, which were observed qualitatively in the
present study. Second, a contribution is made to the field in the form of an Evaluation
Rubric, developed based on the work of the NCTM (1995, 2006). This tool may be used
in future studies by which other assessment tools may be analyzed and refined. Last,
this research project contributes to the existing knowledge base in terms of the
systematic analysis, which was conducted on a widely used academic achievement
measure in the area of mathematics (WIAT-II). The mathematics subtests of the WIAT-
Il were subjected to an evaluation based on adherence to the assessment standards of
the NCTM (1995) and aspects of the NCTM's Large Scale Assessment Tool (2006). From
this assessment, knowledge is gained in terms of areas of strength and those in need of
improvement. It is hoped that popular assessment tools such as the WIAT-II will be
refined further, especially in the areas identified in the Evaluation Rubric as in need of
improvement, specifically Process and Knowledge Representation. It is hoped that
professionals within the field of school psychology and related disciplines will make use

of the contributions put forth by this project.

Links to Variables of Importance
Points must be made in relation to the results of the present assessment in light

of the variables introduced earlier in the study that are known to impact the learning,

application, and assessment of mathematical knowledge. Most pertinently, sections to
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be revisited include a reanalysis of the concept of mathematics misunderstood in the
context of the two item sets tested in this study, the impact that anxiety, gender, culture,
stereotypes, and language may have had on the results, and finally, an exploration of the
place where the Pilot Items fit in with the assessment frameworks previously discussed.
Suggestions for future research will be discussed throughout, according to each sub-
topic. It is my hope that by discussing the results of the present study in the context of
elements presented in the literature review that the reader will be presented with a
coherent picture of the manner in which the results tie in with the many factors that are
involved in mathematics important to both students and professionals.

The WIAT-II items represent the concept of mathematics misunderstood in the
context of the present study. The items are presented in a traditional format with little
room for creativity in either question or answer. Responses are scored only for the
correctness of their final solution and do little to highlight the examiner’s awareness of
the student’s thinking process. Advantages of the WIAT-II items include a reasonably
broad range of content assessed and the fact that students are provided with sufficient
time by which to complete the problems. Results link reasonably well to interventions,
although more could be done to make the process more straightforward. Certainly,
more could be expected from such a prominent assessment tool.

Conversely, the Pilot Items were developed to offer an alternative to traditional
tests of mathematical ability. In the areas where the WIAT-II items are weakest, the
Pilot Items are strongest; specifically, in the areas of providing opportunities for
students to demonstrate their knowledge in non-traditional formats, and in facilitating

the examiner’s awareness of the students’ mathematical thought processes. In this
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manner, the Pilot [tems do a better job of accessing students’ authentic mathematical
knowledge and test for understanding, rather than simply testing calculation
proficiency. Although in their present form, the Pilot I[tems are not yet comprehensive
enough to constitute a full mathematics achievement battery, the foundation has been
laid for future study to develop these items into an assessment tool of greater
significance.

The influence of gender, culture, and stereotypes appeared to have little bearing
on the results of the study. No observations were made that would cause the researcher
to believe that either of the participants’ performance suffered or was bolstered as a
result of gender, culture, or stereotypes. However, these types of influences can, in
some cases, have an effect without being overt (Inzlicht & Ben-Zeev, 2000). Perhaps
future studies might include a self-report measure on the personal meaning of gender,
culture, and stereotypes for each participant in order to gauge better the potential
effects on performance and a larger sample.

The influence of anxiety seemed to be more pronounced than that of gender,
culture, and stereotypes, although did not appear to have severely detrimental effects
on performance. The researcher was able to calm some fears by building rapport
before, during, and after the assessment. Participants were praised for their hard work
and the researcher maintained an open and friendly body language. Additionally, the
parent of Participant B accompanied him during the assessment, which likely put him at
ease. In Participant A’s case, testing was done in her home, which would also suggest
that she might be more relaxed than in another environment. However, it was observed

that both participants appeared more confident in solving most of the Pilot Items,
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compared to the WIAT-II items. Perhaps this self-assured behaviour occurred as a
result of the novelty of the Pilot Items. In future studies, it would be interesting to
administer a measure of state anxiety following each item set in order to determine any
effects that anxiety might have on the results of the testing. Also, it would be interesting
to ask participants how they felt at the completion of each subtest.

The Pilot Items were developed with special attention to the language used
during assessment. Care was taken to ensure that, to the greatest possible extent, the
items were measures of mathematics knowledge, understanding, and skill, rather than
of language. Certainly, the word problems may have caused more of an issue due to the
added language processing demands in addition to the mathematical requirements. As
previously reported, students with LD tend to have greater difficulty solving word
problems in general (Jitendra & DiPipi, 2003). Unsurprisingly, then, both participants
performed better on the items that called for less of a language demand. Jitendra and
DiPipi (2003) identified three main areas that students with LD tend to struggle with
when solving word problems: problem representation, identifying relevant
information, and identifying the necessary operation(s). As such, the Pilot Items present
problems to students that test each of these skills individually, rather than requiring
coordination of all skills in a single question. As expected, participants performed better
on the Pilot Items than on the WIAT-II items; however, it would be interesting to see if
this result would be repeated in a study with a greater number of participants.

Due to the academic diversity present in every classroom (Fuchs & Fuchs, 2005),
we cannot expect children’s skills to progress at precisely the same time. Rather, we can

expect and prepare for students to be constantly at different levels. Teachers may be
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better able to support their students’ mathematical development by teaching
component skills required for solving word problems and teaching students to
integrate these skills based on the students’ knowledge and performance level, rather
than requiring all concepts to be mastered at the completion of any given chapter in the
curriculum outcomes. The use of an assessment tool containing items such as those
found in the Pilot [tems would assist teachers in supporting students’ development in
stages by identifying skills already possessed and subsequently systematically
introducing elements still requiring mastery. It is here that future research would need
to build on the development of such intervention plans based on particular stages of
knowledge.

Upon expansion and further studies of reliability and validity, the Pilot Items
would be suitable for use within the Discrepancy model, RTI, CBA, or Dynamic
Assessment frameworks. Much work would be required in the areas of broadening the
content of the test and forming a standardization sample by which comparisons to
measures of [Q could be made for those working from the Discrepancy model. However,
it is expected that given the harsh criticism the Discrepancy model has received in
recent years, it will likely become less of a standard practice in years to come. As such, it
is suggested that future efforts to expand the Pilot Items into a usable mathematical
achievement assessment battery would focus on the development of a broader range of
content, a set of error types that could be easily linked to intervention strategies, and a
standardized procedure by which to test the effectiveness of interventions during

assessment.



124

Implications for Practice

One theme presented in this paper has been the critique of mathematics
assessments that measure calculation skills disproportionately to other branches of
mathematics. The outcome of doing so can be thought of as having two potentially
negative consequences, a sort of dual dilemma. The dual dilemma refers to the two
negative outcomes that can result in testing students’ mathematical prowess with a test
that has an excessive amount of calculation questions. In the first scenario, the student
is highly proficient in performing computations but has little or no understanding of the
underlying concepts. Within the context of the present study, there was not occasion to
work with such a student. However, it is suspected that larger studies in the future
might encounter this phenomenon. The second scenario arises in the case where the
student has little skill in doing calculations, which masks conceptual knowledge and
understanding. This happening occurred in both participants tested in the present
study. While both students demonstrated relatively poor calculation skills, a greater
wealth of mathematical understanding was uncovered when participants were tested
with the Pilot Items. Although the Pilot Items were originally intended to replace
traditional mathematics test items, given that each item set appears to measure a
different construct, it is now believed that the best course of action would be to
integrate items measuring mathematical understanding with existing measures in
order to create the most comprehensive assessment of students’ mathematical
knowledge.

As previously stated, it is difficult if not impossible to generalize based on the

results of only two participants. However, given that both participants demonstrated
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mathematical knowledge that was not revealed by the WIAT-II items, a cautionary note
may be made. The implication is to be aware that students who score poorly may
possess some mathematical knowledge that is not captured using this assessment tool.
Carefulness is necessary in making decisions that are important in the lives of students.
The results of the present study suggest that the WIAT-II mathematics subtest results
should be interpreted cautiously. The stakes are high, and thus, professionals are urged
to take care when using the WIAT-II alone to measure mathematics achievement.
Additionally, the results of testing should be corroborated with parent and teacher
reports, classroom samples, and additional testing if available. These additional
measures will ensure that an informed decision is made. In the future, it is hoped that
research will shed more light on the ability of popular assessment tools to measure
students’ mathematical thinking and understanding, as distinct from their calculation

skills.

Limitations
The present study was limited by a few factors. First, the small sample size

prevented any meaningful statistical analyses from being computed. Second, only one
rater evaluated students’ responses to the Pilot [tems and the WIAT-II items. Also, only
one rater analyzed the Pilot Items and WIAT-II items according to the Evaluation
Rubric. Future research would need to have at least two raters in order to establish
inter-rater reliability. Last, the orders of the subtests were given in exactly the same
sequence. It is suggested that future studies administer the subtests in different

succession so as to control for order effects.
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Areas for Future Research
It would be of interest to gain further clarity to the first two research questions

via a study with a greater number of participants. A larger sample size would provide
more information regarding the difference between the data collected between the two
assessment tools and clarify the nature of the relationship between calculation skills
and mathematical thinking and understanding. Also, it would be interesting to refine
the Pilot Items such that a lesser language demand is required of students and the items
are a more pure measure of mathematical thinking and understanding. A system for
linking assessment results to evidence-based interventions would also be useful

outcome from future endeavours.

Conclusion
It is hoped that this research project will provide meaningful insights to

educational professionals and encourage further study in how best to assess students’
mathematical knowledge. Although only preliminary conclusions may be drawn, the
present study demonstrates that mathematical understanding can exist despite under-
developed calculation skills. This finding is a cue to parents, teachers, school
psychologists, and others that children may possess valuable mathematical
understanding even when they are struggling with computation. This result lends
support to the idea that calculation skills are not a good overall measure of
mathematical knowledge. Also, this research is a signal to school psychologists and
others who use standardized assessment tools to measure mathematics achievement to
be cautious of tests that are strongly reliant on computation problems to provide an

overall picture of mathematical knowledge, skill, and understanding. The Evaluation
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Rubric developed for the purposes of this study can assist in evaluations of other
assessment tools not reviewed in this project. Future researchers are urged to build on
the existing Pilot Items to create a wider range of content and to link this assessment
tool with evidence-based interventions. It is hoped that the reader has gained a greater
appreciation for the many variables that influence learning and performance in
mathematics and a deeper understanding of assessment of mathematics, beyond

computation.
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Appendix A: Pilot Items



Pilot Items
(Based on Ruch et al, 1925)

L.
47
+ 64

1.1 Describe in your own words what this problem is asking.

Scoring Criteria:

2 pts
* [t's asking you to combine the two numbers to find the total
* You find the sum of the two numbers
* Youtake 47 and add it to 64 and see what you get

* Describes procedure (e.g. first youadd 7 + 4....)
* Youadd 47 and 64

0 pts
* Describes an operation other than addition

1.2 Which one is a good estimate to the problem we just talked about? (Show problem
again)

a) 1011
b) 110
¢) 556

Scoring Criteria:
2 pts:
110

0 pts:
1011 or 556
(Do not give partial credit)

II.
110
- 17

2.1 Which operation should you use to solve this problem?
a) Addition

b) Subtraction

c) Multiplication

139
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d) Division
2.2 Tell in your own words what (insert stated operation) means.

Scoring Criteria:
2 pts
* General: Provides an acceptable response describing subtraction
*  You subtract 17 from 110 and see what's left over
*  You take 17 away from 110 and find the difference
* Subtract the bottom number from the top number

* General: Provides an accurate yet incomplete description of subtraction
* You take the smaller number away from the bigger number

* Incorrectly describes subtraction
* Take 110 away from 17 and find the difference
* Describes one of the other 3 operations (addition, multiplication, or division)

2.3 Make up your own word problem using the numbers above (i.e. 110-17).

Scoring Criteria:
2 pts
* Correctly represents both quantity and operation

1pts
* Correctly represents quantity OR operation

0 pts
* Does not correctly represent either number or operation

I11.

Last year, Mrs. Craig’s class had 26 students. The year before that, there were 27
students. This year, there are 22 students. This year, there are an equal number of boys
and girls in the class. Over the last three years, what is the average number of students
in Mrs. Craig’s class?

3.1 What important pieces of information do you need to know in order to solve this
problem?

Scoring Criteria:
2 pts
* Names all 3 important pieces of information (number of students in class each
year for the past 3 years)
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* Does not name unessential information (equal number of boys and girls in the
class this year)

Ipt
* Names 1 or 2 pieces of important information
* Names 1 or fewer pieces of unimportant information

0 pts
* Does not name any important piece of information
* Names unimportant information

IV.

Samantha has 104 Christmas cards she wants to send. The last day to drop the cards at
the post office in order for them to be delivered on time is December 2214, Pretend that
today is December 15t. How many Christmas cards must Samantha prepare each day in
order to have them ready to mail on the 22nd?

4.1 Express this problem using symbols OR Draw a picture to demonstrate your knowledge
of this problem.

Scoring Criteria:
2 pts
e 104+8=_
* Draws a picture (e.g. of a calendar) and correctly indicates how many cards
Samantha has to complete each day in order to meet the mailing deadline

* Draws a picture (e.g. of a calendar) and indicates that Samantha has to complete
between 10 and 15 cards each day in order to meet the mailing deadline
* Algorithm is partially correct (either numbers or operation)

e Algorithm is incorrect (both numbers and operation)
* Picture does not make sense given the information provided in the problem
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Appendix B: Evaluation Rubric



Evaluation Rubric
(Based on NCTM’s Large Scale Assessment Tool, 2006)
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Exceeds
Expectation

Meets Expectation

Needs
Improvement

Content

Process

Knowledge
Representation

Time
Constraints

Implications
for Learners

Measures a broad
range of
mathematical
processes and
concepts

Measures and
awards points for
correct reasoning

Provides many
opportunities for
students to
represent their
knowledge in non-
traditional formats
(e.g. pictures)

Students are
provided with
ample time to
complete test items

Potential strategies
for remediation are
tested for
effectiveness
during assessment

Measures basic
mathematical
processes and
concepts

Informal or
qualitative
assessment of
reasoning

Provides some
opportunities for
students to
represent their
knowledge in non-
traditional formats

Some time restraints
are imposed

Performance on
general strands
suggests areas for
remediation but
strategies are not
tested for
effectiveness during
assessment

Measures a limited
range of
mathematical
processes and
concepts

Awards points only
for correctness of
final answer

Provides limited or
no opportunity for
students to
represent their
knowledge in non-
traditional formats

All tests are timed

Test results do not
link easily to
interventions and
strategies are not
tested for
effectiveness
during assessment
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Appendix C: Consent Forms
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Free and Informed Administrative Consent Form

Mathematics Beyond Computation: An Examination of Assessment Tools and Exploration of an
Alternative Item Set
Researcher: Sarah Angelopoulos

To Whom It May Concern:

Please allow me to introduce myself. My name is Sarah Angelopoulos, and I
am a graduate student in the Department of Education at Mount Saint Vincent
University. As part of my Master of Arts in School Psychology program, [ am
conducting research under the supervision of Dr. Geneviéve Boulet. My research is
being conducted in the area of assessment of mathematics learning disabilities.

Given the current emphasis on mathematical understanding in both the
mathematics research field and in the classroom, it is important that psycho-
educational assessment tools give students the opportunity to demonstrate their
mathematical skills and knowledge through a variety of formats. Tests should
measure students’ mathematical thinking and understanding as well as their skill in
carrying out mathematical procedures. My goal is to test the feasibility of a brief
item set that focuses on capturing students’ mathematical thinking and
understanding beyond that accounted for by calculation proficiency in comparison
to traditional assessment tools. The results of the present research may assist test
developers in revising psycho-educational assessment batteries to better reflect
today’s emphasis on mathematical understanding and the different ways in which
this knowledge may be represented.

[ am inviting you to participate in my study. I plan to assess 5 students who
have been diagnosed with Learning Disabilities using a brief item set developed to
assess mathematical thinking and understanding. The target age range includes
students from grades 4, 5, and 6.

The item set consists of a total of 12 test questions and will take between 15
and 30 minutes to complete. Questions include items such as asking students to
represent their understanding of a given problem by drawing a picture, selecting the
appropriate operation from a list of response choices, choosing the best estimate of
a given problem (e.g. 30 + 42), as well as more traditional questions such as solving
a standard subtraction problem (e.g. 45-12). The students’ responses to the
questions will help to determine whether or not these types of questions provide
information about a student’s mathematical thinking and understanding beyond
that captured by the ability to compute basic calculation problems. If desired,
parents are welcome to accompany their child during testing for
observational /supervisory purposes. Parents who wish to accompany their child
must agree not to engage in any verbal discourse with the student during testing or
otherwise prompt the child as such behaviours may invalidate the results of the
study.
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Additionally, the researcher will ask parents to provide demographic
information about their child, including the child’s ethnicity, age, and any diagnosed
medical or mental health conditions. Past research has suggested that Japanese and
Chinese children outperform their European and North American counterparts on
tests of mathematical skills. One reason suggested for this phenomenon is that the
counting rules of the Chinese and Japanese languages appears to facilitate the
learning of place value, counting, and computation more so than the English, French,
or Spanish languages. As such, it will be of interest to collect data regarding the
ethnic background of each of the participants in the study. In terms of age, this
information is of interest in that older students may perform better than younger
students, perhaps due to the greater number of years of instruction and experience
with the subject matter. Although the test items are designed to be accessible to
students ranging in grade from 4 to 6, age is an important variable that may
influence the results of the study and therefore is in need of consideration.
Information on diagnosed medical and/or mental health conditions allows the
researcher to consider the implications that diagnoses may have on the results of
the study.

There is a possibility that particularly math anxious students will experience
feelings of anxiety (e.g. worrying) upon learning that the proposed research project
is related to mathematics. In the event that a child was math anxious, the researcher
will assure all students that participation is completely voluntary and that refusal to
participate will not harm the student in any way. It is hoped that such reassurance
will be sufficient to ensure that no participant in the present study suffers from
excessive anxiety.

All information will be kept strictly confidential, and participants will not be
identifiable to the general public in the final thesis. Once the initial data collection is
complete, raw data will be coded such that no identifying information (e.g. name,
school) will be present on the data forms. Data will be stored in a locked filing
cabinet in a locked office on Mount Saint Vincent University property for five years.
Following, data will be destroyed. Upon receiving parental consent, students will
also be described the nature of the research project, be provided an opportunity to
ask questions, and will also decide whether or not to participate in the study.
Participation will be voluntary throughout the process, and students or their
parents/legal guardians will be free to withdraw from the study at any time without
penalty. Students will be assured that declining to participate in the study will not
harm their grades in any way. Upon completion of the study, an executive summary
of the research will be prepared and distributed to all participants.

In order to protect the privacy of participants, the researcher requests that
participating schools agree to do the following: select students who meet the study’s
target sample, mail letters of consent to the parents of the identified students,
schedule times/rooms for the researcher to meet with participants, and mail the
executive summaries to participants.
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It is my hope that this research will help educational professionals to
understand more fully the scope of students’ mathematical understanding.

If you have any questions, please feel free to contact me directly at-
- or . My supervisor, Dr. Geneviéve Boulet, may
also be contacted at 902-457-6305, or genevieve.boulet@msvu.ca. This research
activity has met the ethical standards of the University Research Ethics Board at
Mount Saint Vincent University. If you have any questions or concerns about this
study and wish to speak with someone who is not directly involved with this study,
you may contact the University Research Ethics Board, by phone at 902-457-6350
or by e-mail at research@msvu.ca.

Sincerely,

Sarah Angelopoulos, BA
Master’s Student, Department of Graduate Education
Mount Saint Vincent University

I, , Executive Director of
LDANS, give my permission for Mrs. Sarah Angelopoulos to administer a set of 12
test items assessing mathematical skill and understanding to students at this school
for whom parental consent and individual student assent has been given. It is
understood that this research is being conducted by Mrs. Angelopoulos as part of
the requirements for her degree of Master of Arts in School Psychology, under the
supervision of Dr. Genevieve Boulet.

[ understand that all information shared between participants and Mrs.
Angelopoulos will be strictly confidential, that each student’s participation is
completely voluntary, and that he/she may withdraw participation at any time
during the study without penalty.

By signing this consent form, you are indicating that you have read the above
information, fully understand the above information, and agree to participate
in this study.
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Executive Director's signature Date

Researcher’s signature Date

One signed copy to be kept by the researcher, one signed copy to the participant.
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Free and Informed Parental /Legal Guardian Consent Form

Mathematics Beyond Computation: An Examination of Assessment Tools and Exploration of an
Alternative Item Set
Researcher: Sarah Angelopoulos

Dear Parent(s)/Guardian(s),

Please allow me to introduce myself. My name is Sarah Angelopoulos, and I
am a graduate student in the Department of Education at Mount Saint Vincent
University. As part of my Master of Arts in School Psychology, I am conducting
research under the supervision of Dr. Genevieve Boulet. My research is being
conducted in the area of assessment of mathematics learning disabilities.

Given the current emphasis on mathematical understanding in both the
mathematics research field and in the classroom, it is important that
psychoeducational assessment tools give students the opportunity to demonstrate
their mathematical skills and knowledge through a variety of formats. Tests should
measure students’ mathematical thinking and understanding as well as their skill in
carrying out mathematical procedures. My goal is to test the feasibility of a brief
item set that focuses on capturing students’ mathematical thinking and
understanding beyond that accounted for by calculation proficiency in comparison
to traditional assessment tools. The results of the present research may assist test
developers in revising psychoeducational assessment batteries to better reflect
today’s emphasis on mathematical understanding and the different ways in which
this knowledge may be represented.

[ am inviting your child to participate in my study. I plan to assess 5 students
who have been diagnosed with Learning Disabilities using a brief item set developed
to assess mathematical thinking and understanding. The target age range includes
students from grades 4, 5, and 6. Although some students dislike mathematics or
exhibit worrying or nervous behaviours regarding mathematics, it is helpful for
researchers to have the opportunity to work with students who have such feelings
in an effort to effectively address this reality for many students. Therefore, parents
of “math-anxious” students are encouraged to consider allowing their child to
participate in the study. However, there is a possibility that particularly math
anxious students will experience feelings of nervousness (e.g. worrying) upon
learning that the research project is related to mathematics. In order to alleviate
some of these fears, the researcher will assure all students that participation is
completely voluntary and that refusal to participate will not harm the student in any
way. It is hoped that such reassurance will be sufficient to ensure that no participant
in the present study suffers from excessive anxiety.

The item set consists of a total of 12 test questions and will take between 15
and 30 minutes to complete. Questions include items such as asking students to
represent their understanding of a given problem by drawing a picture, selecting the
appropriate operation from a list of response choices, choosing the best estimate of
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a given problem (e.g. 30 + 42), as well as more traditional questions such as solving
a standard subtraction problem (e.g. 45-12). The students’ responses to the
questions will help to determine whether or not these types of questions provide
information about a student’s mathematical thinking and understanding beyond
that captured by the ability to compute basic calculation problems. If desired,
parents are welcome to accompany their child during testing for

observational /supervisory purposes. Parents who wish to accompany their child
must agree not to engage in any verbal discourse with the student during testing or
otherwise prompt the child as such behaviours may invalidate the results of the
study.

Additionally, the researcher will ask parents to provide demographic
information about their child, including the child’s ethnicity, age, and any diagnosed
medical or mental health conditions. Past research has suggested that Japanese and
Chinese children outperform their European and North American counterparts on
tests of mathematical skills. One reason suggested for this phenomenon is that the
counting rules of the Chinese and Japanese languages appears to facilitate the
learning of place value, counting, and computation more so than the English, French,
or Spanish languages. As such, it will be of interest to collect data regarding the
ethnic background of each of the participants in the study. In terms of age, this
information is of interest in that older students may perform better than younger
students, perhaps due to the greater number of years of instruction and experience
with the subject matter. Although the test items are designed to be accessible to
students ranging in grade from 4 to 6, age is an important variable that may
influence the results of the study and therefore is in need of consideration.
Information on diagnosed medical and/or mental health conditions allows the
researcher to consider the implications that diagnoses may have on the results of
the study.

All information will be strictly confidential, and participants will not be
identifiable to the general public in the final thesis. Once the initial data collection is
complete, raw data will be coded such that no identifying information (e.g. name,
school) will be present on the data forms. Data will be stored in a locked filing
cabinet in a locked office on Mount Saint Vincent University property for five years.
Following, data will be destroyed. Upon receiving parental consent, students will
also be described the nature of the research project, be provided an opportunity to
ask questions, and will decide whether or not to participate in the study.
Participation will be voluntary throughout the process, and students will be free to
withdraw from the study at any time without penalty. Students will be assured that
declining to participate will not harm their grades in any way. Upon completion of
the study, an executive summary of the research will be prepared and distributed to
all participants.

It is suggested that parents/legal guardians who elect to grant permission for
their child to participate in the research project discuss their decision to do so with
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the child. This conversation would be particularly important for children who might
have worries or anxieties related to mathematics. As part of the consent process,
students will also give their consent to participate or decline to participate once the
researcher has presented the purpose of the project to the student.

It is my hope that this research will help educational professionals to
understand more fully the scope of students’ mathematical understanding.

If you have any questions, please feel free to contact me directly at-
-, or . My supervisor, Dr. Geneviéve Boulet, may
also be contacted at 902-457-6305, or genevieve.boulet@msvu.ca. This research
activity has met the ethical standards of the University Research Ethics Board at
Mount Saint Vincent University. If you have any questions or concerns about this
study and wish to speak with someone who is not directly involved with this study,
you may contact the University Research Ethics Board, by phone at 902-457-6350
or by e-mail at research@msvu.ca.

Sincerely,

Sarah Angelopoulos, BA
Master’s Student, Department of Graduate Education
Mount Saint Vincent University

I, , Parent/Legal Guardian
of , give my
permission for Mrs. Sarah Angelopoulos to administer a set of 12 test questions
assessing mathematical skill and understanding to my child.

[ understand that this research is being conducted by Mrs. Angelopoulos for the

purposes of her research under the supervision of Dr. Genevieve Boulet, that all

information will be kept confidential, and that no identifying information will be
revealed in the final project.

In addition to my consent, | understand that my child will be given the opportunity
to choose to participate or decline to participate in this study and that my child may
withdraw from this study at any time without penalty.

[ have read the above information, have been given the opportunity to ask
questions, and am satisfied that [ have sufficient information to give consent for my
child to participate in this study.
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By signing this consent form, you are indicating that you have read the above
information, fully understand the above information, and agree to participate
in this study.

Parent/Legal Guardian of above stated child Date

Researcher's signature Date

One signed copy to be kept by the researcher, one signed copy to the participant.
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Free and Informed Participant Assent Form

Mathematics Beyond Computation: An Examination of Assessment Tools and Exploration of an
Alternative Item Set
Researcher: Sarah Angelopoulos

[ am a graduate student in the Faculty of Education at Mount Saint Vincent
University. As part of my Master of Arts in School Psychology degree, I am
conducting research under the supervision of Dr. Genevieve Boulet. I am inviting
you to participate in my study looking at mathematical skill and understanding. The
purpose of the study is to compare a short set of questions that measure
mathematical understanding to another short set of more traditional math
questions (e.g. 42 + 57). By comparing students’ answers to these two sets of
questions, I'm hoping to find more information about the relationship between
understanding math and being able to do basic math problems (i.e. 42 + 57).

This study involves a set of 12 questions designed to measure students’
mathematical thinking and understanding. Questions include items such as asking
students to show their understanding of a problem by drawing a picture, choosing
the best operation from a list of response choices, and choosing the best estimate of
a given problem (e.g. 30 + 42), as well as more traditional questions such as solving
a standard subtraction problem (e.g. 45-12). It will take approximately 15-30
minutes to complete the questions. The results of the research project will help
researchers to improve tests that measure students’ mathematical knowledge, skill,
and understanding.

Participating in this research project will help researchers to understand
better students’ mathematical understanding and the types of questions that may
best allow students to show what they know about math. Some students, who don’t
like math, may feel worried or nervous about participating in a research project that
is related to doing math. However, your participation is completely voluntary and
deciding not to participate will not harm your grades in any way. If you choose to
participate in this study, you may change your mind and decide that you don’t want
to participate anymore at any time without penalty.

Although the researcher will know whom the students are who participated
in the study, participants will not be identified in the final research project. Once the
students complete the questions, I will make a photocopy and put a code on the
form so that there’s no information that could identify the student (e.g. name,
school). The original copy will be stored in a locked filing cabinet in a locked office at
Mount Saint Vincent University for five years and then will be destroyed. Once the
research project is complete, [ will make a summary of the research, which will be
mailed to your house, and your parent or guardian will explain it to you. I will be
available at that time to answer any questions that you may have.

If you have any questions, please feel free to contact me directly at-
, or . My supervisor, Dr. Geneviéve Boulet, may
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also be contacted at 902-457-6305, or genevieve.boulet@msvu.ca. This research
activity has met the ethical standards of the University Research Ethics Board at
Mount Saint Vincent University. If you have any questions or concerns about this
study and wish to speak with someone who is not directly involved with this study,
you may contact the University Research Ethics Board, by phone at 902-457-6350
or by e-mail at research@msvu.ca.

Sincerely,

Sarah Angelopoulos, BA
Master’s Student, Department of Graduate Education
Mount Saint Vincent University

I, , student, am
volunteering to participate in the research being conducted by Sarah Angelopoulos
and understand that this research is being conducted as part of the requirements for
her degree of Master of Arts in School Psychology.

The purpose of this research has been explained to me by Mrs. Angelopoulos, and I
understand that I may withdraw from this study at any time without penalty.

[ understand that the assessments being conducted by Mrs. Angelopoulos for the
purposes of her research are confidential and that my identity will not be revealed.
[ have read this permission form and/or it has been read to me, and I have been
given the opportunity to ask questions before signing.

By signing this consent form, you are indicating that you fully understand the
above information and agree to participate in this study.

Participant's signature Date

Researcher's signature Date

One signed copy to be kept by the researcher, one signed copy to the participant’s
parent(s)/guardian(s).



