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Abstract 
 
This workshop aims to explore various mathematical topics that emerge from examining classes of chains and their 
properties. Basic concepts are taken from topology, an area of mathematics that is concerned with notions like 
connectedness, how many holes there are, and orientability; geometry, including symmetries; and collapsibility and 
degrees of freedom. These topics are explored through an examination of a small number of chain designs including 
examples that are not topologically linked at all, examples in which the relative position of the links determine the 
symmetries, degrees of freedom, and the way in which their structure is analogous to that of a Moebius band, and 
finally a model of a chain design with a fractal structure. The workshop will include building human models to 
explore various properties and other activities where the participants will be able to play with necklace models to 
better understand the theory and to come up with their own questions to investigate.   

 
Introduction 

 
According to a popular online dictionary [1], a chain is ‘a series of connected links’, and a link is defined 
as ‘one element of a chain’ [2]. A more useful way to define a chain is as follows: a series of 
interconnected, rigid elements called links which, together, constitute a linear, flexible (non-rigid) object 
that can be used to connect, wind, hang or wrap. Generally, chains are made of a limited number of 
different link types that combine in repeating patterns, thereby displaying predictable properties such as 
symmetries.  
 Some of the mathematical properties of chains, which are explored in the workshop, include the 
topological nature of specific designs, the symmetries that are present or absent, degrees of freedom, 
collapsibility and the significance of the ratio of the sizes of the elements, including the eccentricity, 
gauge (thickness of the wire) and inner radius of the links. These properties are explored through various 
examples including the not-link chain, the Byzantine chain design, the ‘Rope’ chain design and Antoine’s 
Necklace [3]. 

The Not-Link Chain 
 
In knot theory, a ‘link’ refers to a ‘set of knotted loops’ or circles [4]. We call the first example under 
consideration the ‘not-link chain’ because although it functions as a chain according to the general 
definition given above, in knot theory terms it is not linked as the elements are not looped through each 
other. 

 
Figure 1: The Not-Link Chain 



 In Figure 1 on the left, a section of the chain shows how it alternatively connects two different types 
of elements: the first is a rod at either end of which is attached a slightly larger metal ‘ball’, forming an 
elongated dumbbell; the second element is a small flat figure eight whose holes are of a smaller diameter 
than the ‘ball’ of the dumbbell but larger than that of the rod. These size ratios allow some movement in 
the chain, and prevent it from disconnecting. The right side of Figure 1 shows a connection between the 
two types in more detail. 
 

The Byzantine Chain 
 
The second example under consideration is known as a Byzantine Chain, King’s Chain or Bali Chain [5]. 
It is related to a design called Idiot’s Delight [6], and is made using only one type of element: a simple 
round ring. Figure 2, below, shows a section of Byzantine Chain made using shower curtain rings. The 
distinguishing feature of this design is the interlocked 4-ring combination in the circle. This grouping is 
made rigid by the addition of the rings connecting it to the next interlocked 4-ring grouping. 
 

 
 

Figure 2: Three Sections of Byzantine Chain 
 
 The design of the Byzantine Chain is interesting from a topological point of view in terms of the 
interlocking of the elements. It is also a good example for examining three-dimensional symmetries. In 
addition to longitudinal translation symmetry, the chain also has reflection symmetry across two 
perpendicular, longitudinal planes (one parallel to the picture plan, one perpendicular to it) and one type 
of transversal plane (through each set of four aligned elements). It also has two kinds of ‘glide rotation’ 
symmetries. Firstly, locally, the interlocked grouping can be rotated 90o around the chain’s longitudinal 
axis, then reflected through the transversal plane through its center, and the global positions of the chain 
are preserved. Secondly, the grouping can be rotated through 90o again, then translated to the position of 
the next grouping and globally, the positions are all preserved.  
 This design is often executed in silver, in a much more compact version than in the figure above. In 
this case, the links that form the interlocked groupings are oval, only two links are used between the 
interlocking groupings instead of four, and the chain acquires a more pronounced rigidity [5]. The degrees 
of freedom are then reduced to rotations around axes located in the centre of the connecting pairs of links. 
Each alternate joint can only move in one rotational direction, perpendicularly to its neighbours, and the 
chain is much less fluid. 
 



The ‘Rope’ Chain 
 
The third example under consideration is a simpler design in that every element is in the same position 
relative to the others. In tiling terms it is ‘monohedral’ [7]. In the Rope Chain design, a standard chain 
design is modified in such a way that every element is connected, not only to its immediate neighbours on 
either side, but to two or even three. In Figure 3, the elements connect four others each time. 
 

 
Figure 3: The Twisted Rope Chain Design 

 
 This design also has several symmetries, including rotation, longitudinal translation and ‘glide 
rotation’ through which each element is related to all the others. It has no global reflection symmetry. In 
the case of the design as executed in Figure 3, the elements are still loose and the chain can be untwisted 
somewhat so that the staggered positions are not as visible. This flexibility depends on the relationship 
between the gauge and the inner radius of the rings. As the gauge is increased relative to the inner radius, 
the chain becomes more rigid and the ‘twist’ more stable. At the extreme, the flexibility comes solely 
from the freedom of movement afforded by the rotational symmetry of the individual elements that can 
slide around each other.  
 The most interesting feature of this design, from a topological perspective, is the twist built up in the 
chain. If a line is traced that connects the outermost point of each element, on either side, as shown in 
Figure 3, then the design can be seen as a band or ribbon that twists around itself and whose ends can be 
joined, just like a Moebius band. The gauge, the inner radius and the number of links that are 
interconnected together within the length of the chain will determine how many times the ‘band’ twists 
around itself and therefore whether the resulting object has one or two edges and one or two faces. 
  

Antoine’s Necklace 
 
Antoine’s necklace is an interesting topological space that is defined recursively [3]. Start with a torus V. 
C1 is a chain of tori linked together as in Figure 1. In each component of C1, construct a smaller chain of 
tori (generally with the same number of links as in C1). Let C2 denote the union of the smaller tori at this 
level. Continue this process ad infinitum, and Antoine’s necklace is the intersection of the Ci. This set is a 
non-empty, compact subset of R3.  In R3, being compact is equivalent to being closed (contains its 
boundary) and bounded.  Each Ci is a subset of Ci-1 (for i greater than or equal to 2), so the intersection of 
the nested sets is non-empty. 
 

 
 

Figure 1: Antoine’s Necklace (http://mathworld.wolfram.com/AntoinesNecklace.html) 



 
 
Antoine’s necklace is a fractal that is homeomorphic (or topologicially equivalent) to the middle thirds 
Cantor set [3]. The middle thirds Cantor set can be obtained as follows [8]. Start with a closed interval of 
unit length, remove the middle third open line segment leaving two closed line segments each of length 
one third. Then remove the middle thirds of the remaining closed line segments. Continue this process ad 
infinitum. The resulting set possesses many interesting properties. It is compact, uncountable (infinite but 
cannot be put in one-to-one correspondence with the natural numbers), and disconnected (given any two 
distinct points x and y in the set, there exist two disjoint open sets U and V such that x is in U and y is in 
V). The set is also self-similar, and one can find the corresponding similarity dimension D.  An example 
of a more familiar self-similar object is the square.  The similarity dimension D of the square is 2 because 
scaling down by a factor of 2 gives 4 similar squares, thus 2D=4.  In the Cantor set, the original line 
segment is scaled down by a factor of 3 to obtain 2 similar line segments, so D is given by 3D=2, or D = 
log2/log3 0.6309. 

 

 
Figure 2: Middle Thirds Cantor Set 

 
Conclusion 

In summary, the workshop will introduce participants to different mathematical concepts that arise from 
studying various classes of chains.  The hands-on activities will allow participants the opportunity to see 
and feel the abstract concepts and to come up with their own mathematical discoveries and queries about 
the chains.  
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