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ABSTRACT  

Starting with a quotation describing mathematical research, this paper presents ways 
of providing students with comparable experiences in mathematical research, in the 
classroom. The paper focuses on the benefits and implications for the students of 
such experiences. “Real mathematics research-situations” are defined, and the 
didactical goals of these situations, as they are experienced are elaborated on. These 
elements are presented through examples, looking at similar situations (research-
situations) in two contexts and using different theoretical frameworks.  

Key words: mathematical research situations, mathematical reasoning, experience of 
knowing, definition construction processes.  

INTRODUCTION, THEORETICAL FRAMEWORK AND AIMS 

It is widely accepted that school mathematics differs considerably, in scope as well as 
in purpose from what mathematicians do; the necessities of the classroom are 
certainly different from those of cutting edge scientific research. It is less obvious 
why the specific activities of students in the classroom are so different from what 
mathematicians do in their research. According to Corfield (2003, p. 35): 

Theorem proving, conjecturing and concept formation make up the three principal 
components of mathematical research. The brilliant observation of Lakatos […] was that 
these components are thoroughly interwoven. […] Mathematicians perform these 
activities simultaneously […] 

In contrast, in the classroom, such three activities are marginalised to the extreme, so 
that students are rarely involved in research situations. We use naturally the word 
“research situations”, but it has to be defined more precisely. We propose in this 
paper a characterisation of what we called “real mathematics research-situations”. Of 
course, there are many such research-situations, and the ways we could approach 
them are also multiple. In this paper, we describe possible issues surrounding 
research situations by focusing on two sets of considerations: epistemological and 
social/didactical. These considerations stem from the following examinations:  
Q1: why investigate research-situation? 



Q2: what qualifies a research-situation as such? 
Q3: what does it mean to “implement a research situation in the classroom” and what 
are the didactical goals? What can a student learn through research-situations? 
In addition, to illustrate the implications of their implementation in the classroom, we 
call on two cases of such research-situations. These situations will be characterised in 
terms of the above-cited considerations as well as their individual contexts.  

RESEARCH SITUATIONS: A MATHEMATICAL AND DIDACTICAL 
CHARACTERISATION 

Mathematical (epistemological) characterisation 
We call ‘research-situations’ situations of a mathematically open nature. This 
characteristic needs to be fulfilled for all parties engaged in the situation (students, 
teacher, professional researcher). In particular, such situations may be still open in 
the ongoing professional research. In addition, accessibility of such research-
situations is established by insuring that the mathematical pre-requisites be of minor 
importance: anybody can engage in research-situations because it mobilizes only 
basic mathematical knowledge (of integers, or basic geometrical forms, etc.).  
The situations are also characterised by a purposeful focusing on the engagement of 
students in a mathematical research process, and therefore, the emphasis is placed on 
the experience of process, as opposed to the acquisition of conceptual/technical 
‘content knowledge’. 
An example of this can be found in the work of a ‘Research Situations for the 
Classroom’ (RSC) team called “Maths à Modeler” (http://mathsamodeler.net),  
centred on an initial presentation by a researcher for classes at different levels (from 
primary school to university). The study of these RSC suggests that they differ from 
what is traditionally known as problem solving by several characteristics: 

• Questions are raised in a similar way to the approach of open conjectures in ongoing 
mathematical research and, sometimes, they are ‘open’ questions; 

• the mathematical objects considered are not necessarily part of the explicit school 
curriculum, and the questions are generally not given in a mathematical form; 

• there need not exist a unique answer (or any answer at all); 

• a solved question can possibly lead to other new questions; 

• the knowledge involved is more often ‘transversal’, such as arguing, conjecturing, 
proving, modelling, defining… bringing us back to Corfield’s view. 

This reflection about RSC is based on the notion that a researcher can, and often 
must, select his own suitable framework of resolution, modify the rules or redefine 
objects or questions. This is precisely the type of practice, fundamental to 
mathematical activity, in which we aim to involve students despite the fact that this 



type of practice is not frequent in class, and even seems practically taboo in many 
circumstances (Godot & Grenier, 2004). 
The concept of ‘transversal knowledge’ cited in the list above has not yet been 
formally defined. At present, it refers to the skills and knowledge which straddle 
various mathematical domains and are used in a whole variety of mathematical 
contexts. In that respect, it relates to what Bruner defined as ‘non-specific transfer or, 
more accurately, the transfer of principles and attitudes’ (Bruner, 1960, p. 17). 
Indeed, transversal knowledge and skills allow the knower (student) to navigate 
within different mathematical domains. They are therefore more valuable as they are 
less context-bound. In this context, they include proving, conjecturing, refuting, 
creating, modelling, reasoning by induction or by decomposition/recomposition, 
extending but also transforming a questioning process, reasoning non-linearly, 
building definitions and having a scientific responsibility.  

Didactical characterisation 
It is essential, for these epistemological characteristics of the experience to be 
fulfilled, that the teacher takes a specific position, similar to that of a researcher faced 
with an open problem, and comprising an awareness of the involved transversal 
knowledge (Godot & Grenier, 2004). This brings us to the social and didactical 
contract (Brousseau, 1997) that will produce the appropriate context for these 
activities to lead to the desired goals. There are many ways to grasp and characterise 
a research process: a didactical viewpoint is proposed in Godot & Grenier (2004) for 
instance, and Rota, in his introduction to The Mathematical Experience, explains that: 

A mathematician's work is mostly a tangle of guesswork, analogy, wishful thinking and 
frustration, and proof, far from being the core of discovery, is more often than not a way 
of making sure our minds are not playing tricks. (Davis & Hersch, 1981, p. xviii) 

The didactical contract needs to focus on the aspects of mathematics research which 
are relevant and the way these aspects can be made present in the experiment. To 
illustrate, Rota’s description suggests that the creative process in mathematics 
research is a messy activity with no guarantee of successful results. This contrasts 
with the traditional classroom experience where the students seek a definite solution 
that the teacher already knows. Each aspect such as this one needs to be evaluated for 
usefulness, then, if possible, reformulated for the classroom context. 
Many of the teacher’s decisions impact on the format and content of the activities. 
Firstly, mathematical research is a creative endeavour, and cannot be easily framed 
into the occasional one-hour session. The timeline must therefore be made to reflect 
this characteristic: the student must have the opportunity to appropriate the 
experience of the process reflexively, and to pass the frustration point where the 
temptation to give up is the strongest.  
Secondly, as discussed above, the mathematical concepts have to be accessible 
enough to the participants that they can focus on their research process (in a reflexive 
endeavour). This is designed to ensure that the responsibility and power is shifted to 



the participating students and it is accomplished in three ways. To begin with, the 
students are given ownership of the experience through their own process of 
formulation of the question/problem. In consequence, and secondly, the teacher does 
not know the answer in advance, or even if there is one. Thirdly, and most 
importantly, the teacher works as a sounding board only, in order to avoid leading the 
process.  
Finally, these constraints need to be recombined with the needs of the curriculum, 
including the teaching of basic notional mathematics. The following two sections 
illustrate instances where this plan was implemented. 

EXAMPLE 1: RESEARCH SITUATION AND EXPERIENCE OF KNOWING 

In 2003, a class of elementary student teachers in an American university spent two 
months in one of their required mathematics courses on a research project ‘at their 
own level’ (Knoll et al., 2004). They spent a month investigating research situations 
similar to the one described above, in informal groups. In many cases, there was not 
even a specific question, let alone a unique answer. In the second month, the students 
chose one of the investigations and took it or one deriving from it to a deeper level. 
Remember, these are not subject specialists; despite that, each student or group of 
students conceived their own topic!  
In this particular case, the students investigated geometry topics such as proper 
colourings1, polyhedra, and tilings. Note again, that the mathematical objects were 
easily accessible. And of course these problems, though seemingly trivial to a 
mathematician, have not all actually been solved; their resolution would not increase 
the canon, because it does not require the development of new mathematical tools, 
and so they are left out, but that is another story. 
Concerning the anticipated achievement of the participating students, the study 
focused on their relationship to the subject of mathematics, including attitudes, 
beliefs and practices. Indeed, if a knower sees mathematics as made of a closely 
interconnected network of concepts, skills and relationships, she will be more likely 
to operate at a higher level than if she regards it as an amalgam of disconnected facts 
and procedures. To illustrate, the theoretical framework is summarised into a table 
with the action of knowing (‘modes of knowing’) in one direction, and the object of 
the knowing (‘notions’) in the other (see Table 1, below).  
In this model, both categories are divided further, creating a matrix describing 
various situations. The key to this categorisation is that different people could place 
experiences of knowing the same mathematics in different cells.  
In addition, the columns are distinguished by whether their content is (a) 
reproducible, (b) transferable, or (c) reconstructible. Clearly, a notion is not known if 

                                           
1 A proper colouring is a colouring of a subdivided system such that no adjacent cells share the same colour. 



it cannot be reproduced. Further, if you know why something is the case, chances are 
you would be able to use it in a different situation. For example, understanding that 
the ‘carry the 1’ action in two column addition comes from the notion of place value, 
can lead to being able to transfer this to the case of two column multiplication 
without being told.  
 

Modes of 
knowing 

 

Notions 

Knowing that/how 
Reproducible but  
neither transferable 
nor reconstructible 

Knowing why  

Reproducible and 
transferable but  
not reconstructible 

Knowing when 
Reproducible  
and transferable  
AND reconstructible 

Convention 
arbitrarily 
chosen 

Memorised  
information and use  

Nothing  
to understand/derive 

Cannot be 
reconstructed by 
reasoning 

Application 
moving from 
theory to 
practice 

Subjectively the same 
as a ‘convention’: 
memorised 
information and use 

Derived from other 
notions using the 
logical structure of 
mathematics 

Derived from other 
notions using the 
logical structure of 
mathematics 

Theorisation 
moving from 
practice to 
theory 

Subjectively the same 
as a ‘convention’: 
memorised 
information and use 

 Derived from other 
notions using logical 
structure of 
mathematics 

Derived from other 
notions using logical 
structure of 
mathematics 

Table 1: Ways of Knowing and Notions 
In the case of ‘reconstructible’ knowledge, the knower has grasped the mathematical 
structure underlying the notion to such an extent that, given the need, she would be 
able to reconstruct it. This distinction is important in that it implies a deeper 
understanding of the mathematical structures from which the specific emerges, giving 
it more transferability potential and a more wide-ranging applicability, making it 
more fundamental and going back to the notion of transversal knowledge. This is not 
saying, however, that it applies only to higher domains of mathematics.  
Let us now look at the rows, the categories of knowledge. There are many models for 
this in the literature on mathematics education (Piaget, 1970; Bell et al. 1983; Skemp, 
1987, Hejný, 2003; etc.). They are generally constructed to emphasise one aspect or 
another, or to make key distinctions. For the sake of clarity, in the present case we 
will refer to the fragments of specific knowledge as notions, avoiding thus the need to 
specify to whose definition of ‘concept’, ‘skill’, etc. we are referring. 
The first and perhaps most important distinction separates a convention from the 
others. This distinction is important in that it is carried through to the ways of 
knowing. As can be seen in the table, a ‘convention’ is not the result of a logical 



derivation from a more basic or fundamental entity. It is somewhat arbitrary. This is 
key: Considering a given notion as a convention is a kind of fallback position, when 
the learner just cannot grasp something. The learner will then regard the notion as 
something that was decided for reasons that remain obscure, or even arbitrarily 
determined by someone else and take it at face value. This mechanism can be the 
correct one, but mostly it will lead to problems.  
The second distinction is between applications and theorisations. Both categories 
contain the results of mathematical reasoning, unlike conventions. In addition, the 
two categories are distinguished through the direction of activities that call on them. 
In the case of application, notions are used to solve problems, to execute algorithms, 
and perform other activities that take the knower from the general, abstract, 
theoretical, to the specific, concrete, applied, as in the majority of traditional 
classroom work. 
In contrast, the theorisation category operates from the specific, concrete, applied 
case to the general, abstract, theoretical. This is what is used in the mathematical 
activities described earlier: proving, conjecturing, refuting, defining, etc.  
Evidently, the right end and the bottom of the table represent deeper thinking. In 
addition, the whole network is interconnected. Unfortunately, in many models, the 
distinction between the centre and right columns is left out and the two are collapsed 
or even left out altogether. This deeper thinking, which relates to the transversal 
knowledge described above, is therefore little emphasised, or verified and assessed in 
conventional classroom activities, even though it is much more fundamental and most 
importantly more resilient.  
The important point to consider in this model is that moving towards the right does 
not imply delving into higher mathematics. The level of mathematics constitutes a 
third, independent dimension, and theorisation notions can be accessed in the context 
of very accessible mathematics, as indeed can ‘knowing when’ be achieved.  
The project formed an experiment focusing on this. In fact, the course was designed 
to direct the students’ attention onto their engagement in a mathematical research 
process, as discussed earlier, with special attention to the elements on the right and 
lower ends of the table. This was done using a whole battery of strategies, including 
the use of writing and portfolios for assessment, reflections and other interactions 
with the didactician. This last in particular was encouraged through the use of 
reflective student journals and the emphasis of the final project report on the 
students’ process as opposed to their results. The participants found generally that the 
atmosphere of the classroom was unlike the mathematics context they were used to. 
Several commented that their outlook if not their feelings had changed, and many 
realised that mathematics was more than they had previously been led to believe 
(Knoll et al., 2004). 



EXAMPLE 2: RESEARCH SITUATION AND DEFINITION 
CONSTRUCTION PROCESSES 

Processes of defining represent an important part of mathematical activity, as 
underlined by Lakatos with an example concerning the immersion of a proof in a 
classification task: 

there are other ways of communicating meaning than definitions. I, for one, shall initiate 
my pupils into the problem-situation which I am dealing with not by definitions, but by 
showing them a cube, an octahedron and showing that for these V-E+F=2. Then I shall 
ask for the domain of validity of this formula. (Lakatos, 1961, p.69) 

In this context, Lakatos shows that a definition is not only a tool for communicating, 
but also a mathematical process taking part in the formation of concepts. In the 
example at hand, the aim consists of a characterisation of markers in order to 
examine the concept formation process, and, in particular, to identify specific 
statements in the defining processes in order to say something about concept 
formation. 
If we consider classification tasks as a part of the definition building context, this 
definition building process itself takes place within the wider problem that is the 
search of a proof, which in turn catalyses the construction of the concept, of 
polyhedra for example (Lakatos, 1961). If we concentrate our attention on a 
classification situation as a definition construction situation (it can be a particular 
RSC), this may appear simple: one takes some examples and counter-examples of a 
mathematical object and asks for a definition. We have experimented with this type 
of defining situation with the mathematical object ‘tree’ (see Ouvrier-Buffet, 2003) 
and also with the mathematical object of the ‘discrete straight line’ (see Ouvrier-
Buffet, 2004). Both these situations have been conducted with students in their first 
year of university (scientific and not scientific sections). These mathematical objects 
are noteworthy because they are accessible by their representations, and are non-
institutionalised, thus no pre-existing definition of these concepts exists. Furthermore, 
let us notice that to classify is a familiar task, both in everyday life and in sciences (in 
geometry or in biology for instance). Moreover, some students’ conceptions about 
mathematical definitions (what definitions are or should be, what they do, the aspect 
they should have, etc.) will certainly have a leading role in such a situation, and may 
represent an obstacle to the defining process, or even a catalyst. We have to be aware 
of this fact, but the main question stays: are students capable of awareness of their 
own defining process? We want to study this kind of reflexive process. So, the 
challenge is now to characterize defining processes and situations in which a 
definition has to be built. 
There exists a model for defining processes (Ouvrier-Buffet, 2003) which emphasises 
the operators and controls taking part in the processes. Modelling defining processes 
involves exploring the procedures implicated in the creativity of professional research 
mathematicians when they build new concepts (admittedly this is no small challenge! 



That is why the roots of the presently characterised operators and controls, which are 
taking part in a defining process, are epistemological and philosophical2)  
The study also involves the identification of the markers of these processes in order 
to analyse how students define. These markers also allow a first characterisation of 
some key tools at the teacher’s disposal for a definition building activity. Let us 
present some element of this. Remember that the teacher, in an RSC, is not the holder 
of knowledge. He has to adopt the position of researcher, like the students. Even then, 
there are ‘didactical levers’ such as recalling the instructions and asking for a 
definition.  
The study of the concept of definition shows that a defining process is based on four 
poles, graspable in three epistemological conceptions: one concerns the construction 
of a theory (Popper, 1963), another deals with Problem-Situation (Lakatos, 1961), 
and two other poles concern the logical and the linguistic aspects (Aristotle), 
respectively. In this context, the teacher (who becomes a Manager-Observer in an 
RSC) may interfere in the defining process of the students through logical requests, 
linguistic or axiomatic exigencies or the supply of given counter-examples. The MO 
can also ask for the construction and/or recognition of an object (tree or discrete 
straight line in a classification task for instance): it is a request obviously related to 
the function of the definition (does the definition help to recognise or construct the 
discrete object?). For instance, a question like this: “draw a discrete straight line 
crossing these two given pixels” engages students in a new reflection, of an axiomatic 
kind; the uniqueness of such straight lines is of crucial importance, and implies thus a 
new movement in the defining process.  
This last statement necessitates a wider characterisation of the teacher’s levers for 
defining situations. It can be comfortable for the teacher, because this kind of activity 
(the didactical contract for students is to build a definition) leads to a product, re-
usable in a course. The teacher also remains in control of the process to a large 
extent, because there are clear goal posts.  
 

CONCLUSION/ OPENING REMARKS 

This paper brings an overall picture of the potentialities of research situations for the 
classroom. RSC give us an opportunity to work on scientific processes, constituted by 
students’ experiments with different cognitive attitudes: doubting, conjecturing, 
refuting (generating new counter-examples), testing etc. In particular, the processes 
of defining can be modelled through four main items: formulating, logic, heuristic, 

                                           
2 We will propose an integrated picture of these operators and controls, in relation with different kinds of defining 
situations during the conference, with a poster entitled “On Modelling Conceptions about Mathematical Definitions”. 
We will also present an illustration of the use of this model with a definition-construction situation. 



theorising. The situations also give potential for students’ reflections on wider issues, 
for example about the nature of mathematics, or even knowledge in general. 
The discussions initiated in this paper illustrate the challenges facing education 
researchers interested in the research-situations as applied in the classroom. Further 
work concerning the nature of transversal knowledge and the understanding of a 
mathematical concept is fundamental. We have now to continue the implementation 
of research situations in the classroom in order to refine the characterisation of 
transversal knowledge and to define “properly” the learning in a specific context: that 
of the creation of knowledge, both in the discipline in general and in the mind of the 
learners.  
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